研究生: |
黃功勛 Kung-Hsun Huang |
---|---|
論文名稱: |
以電化學法製備奈米陣列與奈米多孔陣列結構及其性質探討 Preparations and Characterizations of Nanoarray and Porous Nanoarray Structures with Electrochemical Processes |
指導教授: |
呂世源
Shih-Yuan Lu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 135 |
中文關鍵詞: | 電化學 、奈米陣列 |
外文關鍵詞: | electrochemistry, nanoarray |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,首重的研究為具高規則排列陣列結構之製備。接著再以所製備出的陣列結構作為起始模板,搭配製程簡單、成本低廉的電化學系統,進行奈米陣列與奈米多孔陣列結構的電鍍製備。
首先,我們利用無乳化劑乳化聚合法,製備出具有不同尺寸的聚苯乙烯次微米粒子(250奈米、320奈米、400奈米與440奈米)並以垂直沉積法完成具高規則排列的聚苯乙烯蛋白石球陣列。第二,將上述的聚苯乙烯蛋白石球陣列作為起始模板,經由電鍍聚合法與熱處理去摻雜程序完成低導電度聚吡咯逆蛋白石網狀陣列之製備。再者,利用陽極處理程序,以鋁片為起始材料,在不同的電場與電解液濃度作用下,得到具有高度規則排列,六角圖案結構且孔徑為20奈米與50奈米的陽極氧化鋁膜。
接著在尺寸為440奈米的聚吡咯逆蛋白石球陣列輔助下,先行完成金屬錫蛋白石球陣列的電鍍合成後,再以陽極處理法製備出多孔二氧化錫蛋白石球陣列。所生成的孔洞大小為20~40奈米並具有196m2g-1的高比表面積。
最後,我們讓坡莫合金以蛋白石球陣列、逆蛋白石網狀陣列與奈米棒陣列的結構呈現,並在不同尺寸下分別探討其磁性行為。電鍍合成的坡莫合金具有單軸向與形狀非等向性等性質。最後發現在不同結構中,坡莫合金都呈現隨著陣列粒徑尺寸的減小,矯頑力有隨之上升的趨勢。而在此三種構形中,奈米棒陣列因自身的高長徑比,所以具有最大的矯頑力;逆蛋白石網狀陣列則在磁壁定扎的效應下,具有次之的矯頑力;在蛋白石球陣列中,由於其整體特徵尺寸已接近薄膜塊材,所以得到的矯頑力最為接近薄膜材料、也最低。因此,我們可以藉由形狀異向性的存在,利用不同結構使坡莫合金具有不同的磁性行為表現。
In our research, the first important goal was to prepare highly ordered array structures. Then, we used the above array structures as the template to prepare the nanoarray and nanoporous array structures with the electrodeposition process that has the advantages of being simple and low cost.
First, we prepared the polystyrene (PS) sub-micron particles of different sizes (250nm, 320nm, 400nm, 440nm) by means of the emulsifier-free emulsion polymerization and the highly ordered PS opal arrays by means of the vertical deposition. Second, the above mentioned PS opal array was treated as the initial template to prepare the low conductive polypyrrole (PPy) inversed opal network array with the plating polymerization and thermal treatment for un-doping the PPy. Furthermore, by means of anodization, the starting material, aluminum, was etched at different intensities of voltage and different concentrations of electrolyte and was transformed into highly ordered hexagonal pattern templates. Two different pore sizes, 20 and 50 nm, anodized alumina oxide membranes were prepared.
Following, under the assistance of the 440nm pore size PPy inversed opal we prepare the metal tin opal array in advance after plating, and transform it to the porous tin oxide opal array by means of the anodization. The pore size is a range from 20nm to 40nm and the porous tin oxide opal has the high specific surface area (196 m2g-1).
We then prepared three kinds of permalloy structures. They were the opal, inversed opal, and nanorod array structures. We discussed the magnetic properties of the three types of permalloy structures. The plating-synthesized permalloys possessed anisotropic shapes. The results showed that the coercivity gradually increased as the characteristic length of the arrays decreased in all different structures. Among the three different array structures, the nanorod array exhibited the highest coercivity intensity because of its high aspect ratio. As for the inverse opal array, it showed lower coercivity intensity because of the influence of domain wall pinning effect. The opal array possessed the lowest coercivity due to its large characteristic length scale similar to that of the bulk film material. Hence, one can vary the structure of permalloy to make it possess different magnetic properties because of the shape anisotropy of the structure.
1. J. Ali, H.G. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, M. Paul, M. Paul, M. Lundstrom, H.J Dai, Nature Materials., 1, 241 (2002).
2. J. A. Barnard, H. Fujiwara, V. R. Inturi, J. D. Jarratt, T. W. Scharf, J. L. Wesston, “Nanostructured magnetic networks,” Appl. Phys. Lett., 69, 2758 (1996).
3. T. J. Barton, L. M. Bull, W. G. Klemperer, D. A. Loy, B. McEnaney, M. Misono, P. A. Monson, G. Pez, G. W. Scherer, J. C. Vartuli, O. M. Yaghi, Chem.Mater., 11, 2633 (1999).
4. S. Bhattacharya, A. L. Pope, R. T. Littleton IV, Terry M. Tritt, V. Ponnambalam, Y. Xia, S. J. Poon, Applied Physics Letters., 77, 2476 (2000).
5. A. Birner, R. B. Wehrspohn, U. M. Gosele, K. Busch, “Silicon-Based Photonic Crystals,” Adv. Mater., 13, 377 (2001).
6. P. V. Braun, P. Wiltzius, “Electrochemically grown photonic crystals,” Nature, 402, 603 (1999).
7. P. V. Braun, P. Wiltzius, “Electrochemically Fabrication of 3D Microperiodic Porous Material,” Adv. Mater., 13, 482 (2001).
8. M. D. B.Charlton, M. E. Zoorob, G. J. Parker, M. C. Netti, J. J. Maumberg, S. J. Cox, H. Kemhadjian, “Experimental Investigation of Photonic Crystal Waveguide Devices and Line-Defect Waveguide Bends,” Materi. Sci. Eng. B, 74, 17 (2000)
9. D. G. Choi, S. R. Kim, E. S. Lee, and S. M. Yang, “Particle Arrays with Patterned Pores by Nanomachining with Colloidal Masks,” J. Am. Chem. Soc., 127, 1636 (2005).
10. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single Mode Photonic Band Gap Guidance of Light in Air,” Science, 285, 1537 (1999)
11. B. D. Cullity,“Introduction to Magnetic Materials “, Addison-Wesley (1972).
12. D. Routkevitch, A. N. Govyadinov and P. P. Mardilovich, ” High aspect ratio, High resolution ceramic MEMS,” MEMS., 2, 39 (2000).
13. (a)R. W. Gable, B. F. Hoskins, R. Robson, J. Chem. Soc. Chem. Commun., 1677 (1990). (b) J. Rouquerol, D. Avnir, C. W. Fairbridge, D. H. Evertt, J. H. Haynes, N. Pernicone, J. D. Ramsay, K. S. W. Sing, K. K. Unger, Pure Appl. Chem., 66, 1739 (1994).
14. (a) A. Govindaraj, B. C. Satishkumar, M. Nath, C. N. R. Rao, Chem. Mater. 2000, 12, 202. (b) J. Sloan, D. M. Wright, H.-G. Woo, S. Bailey, A. P. E. York, K. S. Coleman, J. L. Hutchison, M. L. H. Green, Chem. Commun., 8, 699 (1999).
15. Z. Z. Gu, S. Hayami, S. Kubo, Q. B. Meng , Y. Einaga, D. A. Tryk, A. Fujishima, O. Sato, “Fabrication of Structured Porous Film by Electrophoresis,” J. Am. Chem. Soc., 123, 175 (2001).
16. I. Tabukovic, S. Riemer, V. Inturi, P. Jalles, and A. Thayer, “Organic additives in the electrochemical preparation of soft magnetic CoNiFe films,” J. Electrochem. Soc., 147, 219 (2000).
17. O. Jessensky, F. Muller, U. Gosele, ” Self-organized formation of hexagonal pore arrays in anodic alumina,” Appl. Phys. Lett., 72, 1173 (1998).
18. S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices,” Phys. Rev. Lett., 58, 2486 (1987).
19. R. Lawrence, ”Introduction to Magnetism and Magnetic Recording”, Ch5, John Wiley & Sons Inc., (1999).
20. V. Lehmann, “The Physics of Macropore Formation in Low Doped n-Type Silicon,” J. Electrochem. Soc., 140, 2836 (1993).
21. V. Lehmann, H. Foll, “Formation Mechanism and Properties of Electrochemically Etched Trenches in n-Type Silicon,” J. Electrochem. Soc., 137, 653 (1990).
22. A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, ”Haxagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” J Appl.Phys., 84,6023 (1998).
23. Y. Li et al.,”Ordered semiconductor ZnO nanowire arrays and their photoluminesence properties,” Appl. Phys. Lett., 76, 2011 (2000).
24. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M.M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operation at infrared wavelengths,” Nature, 394, 251 (1998).
25. S.Y. Lin, J. G. Fleming, R. Lin, “Complete three-dimensional photonic bandgap in a simple cubic structure,” J. Opt. Soc. Am. B, 18, 32 (2001).
26. S. Kawakami, T. Kawashima, T. Sato, “Mechanism of shape formation of three-dimensional periodic nanostructures by bias sputtering,” Appl. Phys. Lett., 74, 463 (1999).
27. T. Kawashima, K. Miura, T. Sato, S. Kawakami, “Self-healing effects in the fabrication process of photonic crystals,” Appl. Phys. Lett., 77, 2613 (2000).
28. R. A. Khalkhali, “Effect of thermal treatment on electrical conductivities of polypyrrole conducting polymers,” Iranian Polym. J., 13, 56 (2004).
29. D. W. McComb, B. M. Treble, C. J. Smith, R. M. D. L.Rue and N. P. Jolmson, “Synthesis and Characterisation of Photonic Crystals,” J. Mater .Chem., 11, 142 (2001).
30. Q. B. Meng, Z. Z.Gu, O. Sato, , “Fabrication of highly ordered porous structures,” Appl. Phys. Lett., 77, 4313 (2000).
31. Q. B. Meng, C. H. Fu, Y. Einaga, Z. Z. Gu, A. Fujishima, O. Sato, “Assembly of Highly Ordered Three-Dimensional Porous Structure with Nanocrystalline TiO2 Semiconductors,” Chem. Mater., 14, 83 (2002).
32. K. Nielsch, F. Muller, A. P. Li, and U. Gosele., ”Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition,” Adv. Mater., 12, 582 (2000).
33. K. Nielsch, R. B Wehrspohn, J. Barthel, J. Kirschner, U. Gosele, ”Hexagonally ordered 100 nm period nickel nanowire arrays,” Appl. Phys. Lett., 79, 1360 (2001).
34. K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, Science., 300, 1269 (2003).
35. H. C. Shin, J. Dong, and M. L. Liu, “Porous Tin Oxides Prepared Using an Anodic Oxidation Process,” Adv. Mater., 16, 237 (2004).
36. T. Sumida, Y. Wada, T. Kitamura, S. Yanagida, , “Electrochemical preparation of macroporous polypyrrole films with regular arrays of interconnected spherical voids,” Chem. Commun., 2000, 1613 (2000).
37. S. Switching, Physical Review Focus., 17 January (2003).
38. G. E. Thompson, ”Porous anodic alumina : fabrication, characterization and applications,” Thin solid films., 297,192 (1997).
39. S. Wernick and R. Pinner, “The surface treatment and finishing of aluminum and its alloy,” Robert Draper Ltd., 1, 297 (1972).
40. K. H. Wu, and S. Y. Lu, “Fabrication of array of nanoporous tin oxide nanorods with electrochemical processes,” Electrochem. and Solid State Lett., 8, D9 (2005).
41. Y. Xu, Ph.D. Thesis, Unversuty of Manchester, (1983).
42. L. B. Xu, L. D. Tung, L. Spinu, A. A. Zakhidov, R. H. Baughman, J. B. Wiley, ”Synthesis and magnetic behavior of periodic nickel sphere arrays,” Adv. Mater., 15, 1562 (2003).
43. E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett., 58, 2059 (1987)
44. E. Yablonovitch, T. J. Gmitter, “Photonic Band Structure: the Face-centered-cubic Case,” Phys. Rev. Lett., 63, 1950 (1989).
45. E. Yablonovitch, T. J. Gmitter, K. M. Ho, “Photonic Band Structure: The Face-centered-cubic Case Employing Nonspherical Atoms,” Phys. Rev. Lett., 67, 2295 (1991)
46. Y. Yang, H. L. Chen, Y. F. Mei, J. B. Chen, X. L. Wu, X. M. Bao, “Anodic alumina template on Au/Si substrate and preparation of CdS nanowires,” Solid State Commun., 123, 279 (2002).
47. N. Zech, F. J. PodIaha, D. Landolt, “Anomalous codeposition of iron group metals I. Experimental Results,” J. Electrochem. Soc., 146, 2886 (1999).
48. N. Zech, F. J. PodIaha, D. Landolt, “Anomalous codeposition of iron group metals II. Mathematical Model,” J. Electrochem. Soc., 146, 2892 (1999).
49. J. G. Zhu and H. N. Bertram, “Micromagnetic Studies of Thin Metallic Films”, J. Appl. Phys., 63, 3248 (1988).
50. S. S. Zumdahl, Chemistry, 3nd Ed, D. C. Heath and Company (1993)
51. 戴智禮, “磁性材料”, 台灣商務印書館 (1970)
52. 張煦, “磁性物理學”, 聯經出版事業公司 (1982)
53. 尤光先, “鋁的陽極處理技術”, 徐氏基金會 (1983)
54. 陳信安, “磊晶NiFe (111) / NiFeMn中應力引發交換異向之研究”, 國立清華大學材料工程研究所 (1999)
55. 蔡雅芝, “淺談光子晶體”, 物理雙月刊 (1999)
56. 鄭振東, “實用磁性材料學”, 全華科技出版社 (1999)
57. 張志高, “橫向式高密度磁記錄媒體的原理與極限”, 中華民國磁性技術協會會訊 (2000)
58. 呂英治, 洪敏雄, 科儀新知, 22 (2001)
59. 楊志忠, “新世紀奈米光電結構-光子晶體”, 物理雙月刊 (2001)
60. 王崇人, 科學發展, 354 (2002)
61. 金重勳, “磁性技術手冊”, 磁性技術手冊 (2002)
62. 金重勳, “磁性技術手冊”, 磁性技術手冊 (2002)
63. 金重勳, “磁性技術手冊”,中華民國磁性技術協會 , (2002)
64. 隋安莉, 洪永叁, 科學發展, 353 (2002)
65. 劉導淳, “光子晶體-光的半導體”, 光電技術 (2002)
66. 陳永平, “電磁學”, 全華科技圖書股份有限公司 (2003)
67. 謝沐田, “高低頻變壓器設計”, 全華科技圖書公司 (2004)