簡易檢索 / 詳目顯示

研究生: 陳博民
Po-Ming Chen
論文名稱: 剪切水平表面聲波液相量測系統的建立及其在生物感測之應用
Development of Shear Horizontal Surface Acoustic Wave Liquid Sensing System and Applications for Biosensing
指導教授: 果尚志
S.Gwo
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 53
中文關鍵詞: 表面聲波液相
外文關鍵詞: SAW, liquid
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 表面聲波除了早期在通訊及電子領域上的研究和應用的發展外,因其具有高度靈敏的特性,並且有尺寸、重量上的優勢,近年來漸漸被使用在生物感測領域的開發上。表面聲波在生物感測系統的應用上主要分為氣態系統以及液態系統的量測,由於液體比氣體有更多的影響參數的不確定性,因此在液態量測系統的建立上比起氣態量測系統有更多的變數需要考慮。由於液態系統有許多不可被取代的特點,例如在液體內即時作用的量測上。
    因此為了追求生物感測上的準確性以及穩定性,並能作到即時量測的效果。在本文中,以122MHz的剪切水平表面聲波元件作為基礎,與回授放大電路結合構成高頻振盪電路。並且製作出能保持溫度、濕度與壓力穩定的量測環境來減低外在因素所造成的量測誤差。利用此系統來進行非即時與即時的液相量測,並做生物感測上的實際應用。為了穩定的擷取量測數據,以及方便後端的監控,將量測系統與計頻器和頻譜儀同步的連結,使用GBIP介面卡與電腦連結,並利用Lab VIEW程式進行儀控與訊號擷取和分析。
    經本文之理論與實驗驗證,基材為36°XY-LiTaO3所製作出來的剪切水平表面聲波元件,中心頻率為123.15Mz,插入損耗約為-6.125dB。製作出來的高頻振盪器操作頻率為122.14MHz,基頻載波功率約為14.31 dBm。而利用本量測系統進行量測,可以偵測出奈米金顆粒-DNA共軛體在元件感測區上的即時質量吸附情況。


    摘要 i 目錄 ii 圖目錄 v 表目錄 viii 第一章 前言及論文架構 1 1.1 前言 1 1.2 本論架構 2 第二章 文獻探討 3 2.1文獻探討 3 第三章 理論模式推導 8 3.1壓電理論 8 3.1.1正壓電效應 8 3.1.2逆壓電效應 9 3.1.3壓電材料 9 3.2表面聲波感測原理 10 3.2.1指叉電極 10 3.2.2表面波速 11 3.2.3機電耦合係數 12 3.2.4插入損耗 13 3.2.5溫度係數 13 3.3表面聲波感測機制 14 3.3.1剪切水平表面聲波 14 3.3.2質量負載效應 16 3.4振盪電路設計理論 18 3.4.1振盪電路回授分析 18 3.4.2高頻諧振電路 19 3.4.3 S參數 19 第四章研究方法與量測系統之建立 21 4.1表面聲波元件基材 21 4.2表面聲波元件製作與量測 21 4.3表面聲波感測電路設計與製作 24 4.3.1放大器選擇 24 4.3.2偏壓電路設計 25 4.3.3壓電晶體的特性 26 4.3.4高頻振盪電路設計 27 4.3.5電路輸出 28 4.4環境控制 29 4.5 未來實驗設計 30 4.5.1雙延遲線振盪器 30 4.5.2量測系統架構 31 4.5.3量測方法 33 第五章 實驗結果與討論 34 5.1元件特性量測 34 5.2溫度對振盪頻率的影響 37 5.3液態穩定性測試 38 5.4導電度量測 39 5.5奈米金顆粒-DNA共軛體吸附之質量變化偵測 43 第六章 結論與展望 50 參考文獻 52

    [1]Lord Rayleigh.1885.On waves propagating along the plane of an elastic
    Solid.Proc. London Math. Soc.Vol.17:4-11
    [2] G. Sauerbrey.1959. Z. Phys.155 :206-22
    [3] R. M. White.1965. Direct piezoelectric coupling to surface elastic waves. Appl. Phys. Lett. 7:314-316
    [4] B. Drafts.2001.Acoustic wave technology sensors. IEEE TRANSACTIONS ON MiCROWAVE THEORY AND TECHNIQUES. vol. 49: 795-802
    [5] D.S. Ballantine, Jr.1997. Acoustic wave sensors.4-7.San Diego.Academic Press
    [6] Ron F.Schmitt.2001. Rapid design of SAW oscillator electronics for sensor applications.Sensor and Actuators B.80-85
    [7] Jun Kondoh.1991.Measurements of Conductivity and Ph of Liquid Using Surface Acoustic devices.Japanese Journal of Applied Physics.31-1:82-84
    [8] Jun Kondoh.2003. Development of practical surface acoustic wave liquid sensing system and its application for measurement of Japanese tea. Sensor and Actuators B.92:191-198
    [9] I.I. Leonte.2006. Taste sensors utilizing high-frequency SH-SAW devices. Sensor and Actuators B.118:349–355
    [10]Youngjune Hur.2005. Development of an SH-SAW sensor for the
    detection of DNA hybridization. Sensor and Actuators A.120:462-467
    [11] G. Lippmann.1881 Phys. Ser. 5. 24:145
    [12] 吳朗。1994。電子陶瓷/壓電。台北。全華科技圖書。
    [13] C. K. Campbell.1998.Surface acoustic wave devices for mobile and wireless communications. San Diego. Academic Press
    [14] Kondoh J et al.1999.Shear Horizontal Surface Acoustic Wave Sensor. Sensors Update,6(1):59-78
    [15] Katsumi CHONO.2004. Development of Novel Atomization System Based on SAW Streaming. Japanese Journal of Applied Physics. Vol. 43, No. 5B: 2987–2991
    [16] Showko SHIOKAWA.2004. Surface Acoustic Wave Sensors. Japanese Journal of Applied Physics. Vol. 43,.No. 5B. 2799–2802
    [17] Michael Thompson.1997.Surface-launched acoustic wave sensors.80-82.New York.Wiley-Interscience
    [18] D.S. Ballantine, Jr.1997. Acoustic wave sensors.31-35.San Diego:Academic Press
    [19] Ron F.Schmitt.2001.Sensor and Actuators B.80-85
    [20] 袁帝文。1999。高頻電路設計。二刷,29-34。台北:高立。
    [21] Boylestad, Nashelsky著/張順雄,張忠誠,李榮乾譯。2002。電子元件與電路理論。四版。臺北市。臺灣東華。
    [22] Jun Kondoh, Takao Muramatsu, Tetsuo Nakanishi,Yoshikazu Matsui, Showk Shiokawa.2003. Development of practical surface acoustic wave liquid sensing system and its application for measurement of Japanese tea.Sensors and Actuators B.92. 191–198
    [23] E. Berkenpas.2006. Detection of Escherichia coli O157:H7 with langasite pure shear horizontal surface acoustic wave sensors. Biosensors and Bioelectronics.21. 2255–2262
    [24] Darren W. Branch.2004. Low-level detection of a Bacillus anthracis simulant usingLove-wave biosensors on 36◦YX LiTaO3. Biosensors and Bioelectronics.19. 849–859
    [25] Hung-Wei Chang.2007. Surface acoustic wave immunosensors based on immobilized C60-proteins. Sensors and Actuators B. 121. 522–529
    [26] W. Li.2000. Self-assembled multilayers of alternating gold nanoparticles and dithiols:Approaching to Superlattice. Colloids and SurfacesA : Physicochemical andEngineering Aspects. 175.217-223
    [27] Michael Thompson.1997.Surface-launched acoustic wave sensors.53-66.New York.Wiley-Interscience
    [28] J.Zheng.2000. Nanopatterned Assembling of Colloidal Gold Nanoparticles on Silicon. Langumuir.16:4409-4412

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE