簡易檢索 / 詳目顯示

研究生: 鄭怡佳
Cheng, Yi-Chia
論文名稱: 無需全域通道列舉的高效多通道交會演算法
Efficient Multichannel Rendezvous Algorithms without Global Channel Enumeration
指導教授: 張正尚
Chang, Cheng-Shang
口試委員: 許健平
Sheu, Jang-Ping
楊谷章
Yang, Guu-Chang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 41
中文關鍵詞: 多通道交會區域性敏感哈希一致性哈希
外文關鍵詞: multichannel rendezvous, locality-sensitive hashing, consistent hashing
相關次數: 點閱:51下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多通道交會問題(Multichannel Rendezvous Problem, MRP)是物聯網(IoT)應用中鄰居發現的一項重要挑戰,要求兩個用戶透過在可用通道之間隨時間跳頻來找到彼此。本文針對缺乏全域通道列舉系統的情境下的MRP進行研究。受到廣泛應用於數據中心和點對點網絡的一致性哈希(Consistent Hashing)的啟發,我們提出了低複雜度的區域性敏感哈希(LC-LSH)跳頻演算法。此外,我們不僅採用了增強多重集的模塊化時鐘演算法並提出了ASYM-LC-LSH4演算法,還將LC-LSH演算法與準隨機(Quasi-Random, QR)演算法結合,開發了QR-LC-LSH4演算法。該演算法保證最大交會時間(MTTR)有上限,同時實現低期望交會時間(ETTR)。大量模擬結果顯示,所提出的演算法即使在沒有全域通道列舉系統的情況下,在同步和非同步設定下,其性能仍可與最先進的LSH演算法相媲美。我們的研究為多樣化的物聯網環境提供了一種可靠的高效交會解決方案,並為未來在大規模、動態無線網絡中的研究與應用奠定了堅實的基礎。


    The multichannel rendezvous problem (MRP) is a critical challenge for neighbor discovery in IoT applications, requiring two users to find each other by hopping among available channels over time. This paper addresses the MRP in scenarios where a global channel enumeration system is unavailable. Inspired by consistent hashing, which is widely used in data centers and peer-to-peer networks, we propose low-complexity, locality-sensitive hashing (LC-LSH) channel hopping algorithms. Furthermore, we not only employ the multiset-enhanced modular clock algorithm and propose the ASYM-LC-LSH4 algorithm but also integrate our LC-LSH algorithm with the quasi-random (QR) algorithm and develop the QR-LC-LSH4 algorithm to guarantee a bounded maximum time-to-rendezvous (MTTR) while achieving a low expected time-to-rendezvous (ETTR). Extensive simulations demonstrate that the proposed algorithms achieve performance comparable to state-of-the-art LSH algorithms in both synchronous and asynchronous settings, even in the absence of a global channel enumeration system. Our work provides a robust solution for efficient and effective rendezvous in diverse IoT environments, paving the way for future research and practical implementations in large-scale, dynamic wireless networks.

    Contents 1 List of Figures 4 1 Introduction 5 2 The multichannel rendezvous problem 10 2.1 Classification of the Problem. . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 The low-complexity algorithms 15 3.1 The synchronous setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 The asynchronous setting . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4 Achieving bounded MTTR 21 4.1 The multiset-enhanced modular clock algorithm . . . . . . . . . . . . . . 21 4.2 The ASYM-LC-LSH4 algorithm . . . . . . . . . . . . . . . . . . . . . . . 22 4.3 The QR-LC-LSH4 algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 26 5 Simulations 30 5.1 Numerical results for the low-complexity algorithms . . . . . . . . . . . . 30 5.2 Numerical results for the ASYM-LC-LSH4 algorithm and the QR-LC LSH4 algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6 Conclusion 37

    [1] Y.-C. Cheng and C.-S. Chang, “On the multichannel rendezvous problem without global channel enumeration,” in Proc. IEEE WOCC, 2024.
    [2] N. C. Theis, R. W. Thomas, and L. A. DaSilva, “Rendezvous for cognitive radios,” IEEE Transactions on Mobile Computing, vol. 10, no. 2, pp. 216–227, 2011.
    [3] K. Bian and J.-M. Park, “Maximizing rendezvous diversity in rendezvous protocols for decentralized cognitive radio networks,” IEEE Transactions on Mobile Computing, vol. 12, no. 7, pp. 1294-1307, 2013.
    [4] Z. Gu, Y. Wang, Q.-S. Hua, and F. C. M. Lau, Rendezvous in Distributed Systems: Theory, Algorithms and Applications. Springer, 2017.
    [5] C.-S. Chang, J.-P. Sheu, and Y.-J. Lin, “On the theoretical gap of channel hopping sequences with maximum rendezvous diversity in the multichannel rendezvous problem, IEEE/ACM Transactions on Networking, vol. 29, no. 4, pp. 1620–1633, Aug. 2021.
    [6] C.-S. Chang, C.-Y. Chen, D.-S. Lee, and W. Liao, “Efficient encoding of user IDs for nearly optimal expected time-to-rendezvous in heterogeneous cognitive radio networks,” IEEE/ACM Transactions on Networking, vol. 25, no. 6, pp. 3323–3337, 2017.
    [7] G.-Y. Jiang and C.-S. Chang, “Locality-sensitive hashing for efficient rendezvous search: A new approach,” accepted by IEEE Transactions on Communications, 2024. Conference version “Using locality-sensitive hashing for rendezvous search,” in IEEE International Conference on Communications, Rome, Italy, 2023, pp. 1743-1749.
    [8] S. Chen, A. Russell, A. Samanta, and R. Sundaram, “Deterministic blind rendezvous in cognitive radio networks.” IEEE 34th International Conference on Distributed Computing Systems (ICDCS), pp. 358–367, 2014.
    [9] Z. Gu, H. Pu, Q.-S. Hua, and F. C. M. Lau, “Improved rendezvous algorithms for heterogeneous cognitive radio networks,” In Proc. IEEE INFOCOM, pp. 154–162, 2015.
    [10] Y.-C. Chang, C.-S. Chang, and J.-P. Sheu, “An enhanced fast multi-radio rendezvous algorithm in heterogeneous cognitive radio networks,” IEEE Transactions on Cognitive Communications and Networking, vol. 4, no. 4, pp. 847–859, 2018.
    [11] J. Leskovec, A. Rajaraman, and J. D. Ullman, Mining of massive data sets. Cambridge university press, 2020.
    [12] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Panigrahy, “Consistent hashing and random trees: Distributed caching protocols for relieving hot spots on the world wide web,” Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of Computing (STOC), pp. 654–663, 1997.
    [13] D. R. Karger, and M. Ruhl, “Simple efficient load balancing algorithms for peer-to-peer systems,” Proceedings of the sixteenth annual ACM symposium on Parallelism in algorithms and architectures, pp. 36–43. 2004.
    [14] C.-S. Chang, Y.-C. Chang, and J.-P. Sheu, “A quasi-random algorithm for anonymous rendezvous in heterogeneous cognitive radio networks,” arXiv preprint arXiv:1902.06933, 2019.
    [15] J. Shin, D. Yang, and C. Kim, “A channel rendezvous scheme for cognitive radio networks,” IEEE Communications Letters, vol. 14, no. 10, pp. 954-956, 2010.
    [16] Z. Lin, H. Liu, X. Chu, and Y.-W. Leung, “Jump-stay based channel-hopping algorithm with guaranteed rendezvous for cognitive radio networks,” in Proc. IEEE INFOCOM 2011.
    [17] Z. Gu, Q.-S. Hua, Y. Wang, and F. C. M. Lau, “Nearly optimal asynchronous blind rendezvous algorithm for cognitive radio networks,” in Proc. IEEE SECON, 2013.
    [18] G.-Y. Chang, J.-F. Huang, and Y.-S. Wang, “Matrix-based channel hopping algorithms for cognitive radio networks,” IEEE Transactions on Wireless Communications, vol. 14, no. 5, pp. 2755–2768, 2015.
    [19] B. Yang, M. Zheng, and W. Liang, “A time-efficient rendezvous algorithm with a full rendezvous degree for heterogeneous cognitive radio networks,” in Proc. IEEE INFOCOM, pp. 1–9, 2016.
    [20] Y.-H. Wang, G.-C. Yang, and Wing C. Kwong, “Asynchronous channel-hopping sequences with maximum rendezvous diversity and asymptotic optimal period for cognitive-radio wireless networks,” IEEE Transactions on Communications, vol. 70, no. 9, pp. 5853–5866, 2022.
    [21] S. Alpern, “The rendezvous search problem,” SIAM J. Control Optim., vol. 33, pp. 673–683, 1995.
    [22] M. El Bachraoui, “Primes in the interval [2n, 3n],” Int. J. Contemp. Math. Sci., vol. 1, no. 13, pp. 617–621, 2006.

    QR CODE