研究生: |
廖彥嘉 Liao, Yan-Jia |
---|---|
論文名稱: |
正式結構大面積有機太陽能電池之效率改善 Improve the Power Conversion Efficiency of Normal Structure Large Area Organic Solar Cells |
指導教授: |
洪勝富
Horng, Sheng-Fu |
口試委員: |
孟心飛
Meng, Hsin-Fei 趙宇強 Chao, Yu-Chiang |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 91 |
中文關鍵詞: | 有機太陽能電池 、刮刀塗布 、活性層 、介面修飾層 、溫室作物生長實驗 |
外文關鍵詞: | organic solar cells, blade coating, active layer, interfacial modification layer, greenhouse crop growth experiment |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
作為新一代能源有機太陽能電池,有著眾多的優點,構造簡單成本較低,對環境低汙染,高透光性能應用在眾多場域,如溫室與建築整合之中,是十分具有商業價值且對於環境無害的綠色能源。但有機太陽能電池在光電轉換效率上仍有著非常大的進步空間,因此本論文透過活性層膜厚的均勻度改善,以及介面層材料上的搭配、陰極金屬厚度的調整,希望能在其中找到提高元件效率的方法。
從結果上來看,在膜厚方面當劑量使用在每管170μl,刮刀加速度8.5mm/s2,機板溫度53℃時,整體膜厚可以落在95~115nm,與目標膜厚100nm相近,在基板前後段膜厚的落差也控制在20nm以內。在介面層的搭配方面,以PM6/Y6搭配比例0.3的TASiW-12有著PCE 12.7%的高效率,穩定性材料PM6/Y6/PCBM搭配比例1.2的PDINO有著PCE 11.6%的效率。另一方面,在半透明元件上,嘗試更改陰極厚度,在不劇烈影響透光性之下,隨著厚度的提高,元件效率也會隨之增加。
有機太陽能電池的最終目標是能使用在日常生活之中,因此元件在戶外的表現以及所帶來的影響與穩定與否,將是必須被探討的議題。本實驗與農業試驗所合作,在溫室環境下測試半透明有機太陽能電池對作物的生長是否會造成影響,從結果上來看,對比矽晶太陽能電池,對於作物的生長,影響更少,提供了更好的生長環境,具有著更大的開發潛力,而其中潛在的穩定性問題也出現在戶外場域之中,本論文也針對這樣的情況提出幾個可以改善的方法,期待在未來改善之後,可以為永續能源提供更好的選擇。
As a new generation of energy, organic solar cells have many advantages, simple structure, low cost, low pollution to the environment, and high light transmission performance. They are used in many fields, such as greenhouses and the integration of buildings. It is green energy with commercial value and is beneficial to the environment. However, there is still a lot of room for improvement in the power conversion efficiency of organic solar cells. Therefore, in this thesis, through the improvement of the uniformity of the film thickness of the active layer, the matching of the interfacial layer material, and the adjustment of the thickness of the cathode metal. Hope to find a way to improve the efficiency of components in it.
From the results, in terms of film thickness, when the dosage is 170μl per tube, the scraper acceleration is 8.5mm/s2, and the machine board temperature is 53°C, the overall film thickness can fall within 95~115nm, which is similar to the target film thickness of 100nm. The difference in film thickness between the front end and back end is also controlled within 20nm. In terms of interfacial layer matching, TASiW-12 with PM6/Y6 ratio of 0.3 has a high PCE efficiency of 12.7%, and PDINO with a stable material PM6/Y6/PCBM ratio of 1.2 has a PCE of 11.6%. On the other hand, on semi-transparent components, try changing the thickness of the cathode, and the efficiency of the component will increase as the thickness increases without drastically affecting the light transmittance.
The ultimate goal of organic solar cells is to be used in daily life, so the outdoor performance of the device and its influence and stability will be issues that must be discussed. This experiment cooperated with the Agricultural Experiment Institute to test whether the translucent organic solar cells will affect the growth of crops in a greenhouse environment. From the results, compared with silicon solar cells, it has less impact on the growth of crops and provides a better growth environment. It has greater development potential. The potential stability problem also appears in the outdoor field. This thesis also proposes several improvement methods for such a situation. It is expected that after the improvement in the future, it can provide a better choice for sustainable energy.
[1] M. T. Kibria, A. Ahammed, S. M. Sony, F. Hossain and S. Islam, "A Review: Comparative studies on different generation solar cells technology," in Proc. of 5th International Conference on Environmental Aspects of Bangladesh, 2014, pp. 51--53.
[2] Eshwar Ravishankar, Melodi Charles, Yuan Xiong, Reece Henry, Jennifer Swift, Jeromy Rech, John Calero, Sam Cho, Ronald E. Booth, Taesoo Kim, Alex H. Balzer, Yunpeng Qin, Carr Hoi Yi Ho, Franky So, Natalie Stingelin, Aram Amassian, Carole Saravitz, Wei You, Harald Ade, Heike Sederoff, Brendan T. O’Connor, Balancing crop production and energy harvesting in organic solar-powered greenhouses, Cell Reports Physical Science, Volume 2, Issue 3, 2021.
[3] Zhang, K., Chen, Z., Armin, A., Dong, S., Xia, R., Yip, H.-L., Shoaee, S., Huang, F. and Cao, Y. (2018), Efficient Large Area Organic Solar Cells Processed by Blade-Coating With Single-Component Green Solvent. Sol. RRL, 2: 1700169.
[4] Nikhil Agrawal, Mohd. Zubair Ansari, Amitava Majumdar, Radha Gahlot, Neeraj Khare, Efficient up-scaling of organic solar cells, Solar Energy Materials and Solar Cells,
Volume 157, 2016, Pages 960-965.
[5] L. Lucera, F. Machui, P. Kubis, H. D. Schmidt, J. Adams, S. Strohm, T. Ahmad, K. Forberich, H.-J. Egelhaaf and C. J. Brabec, Energy Environ. Sci., 2016, 9, 89.
[6] Pei-Ting Tsai, Kai-Chieh Yu, Chia-Ju Chang, Sheng-Fu Horng, Hsin-Fei Meng, Large-area organic solar cells by accelerated blade coating, Organic Electronics, Volume 22, 2015, Pages 166-172.
[7] L. Lucera, F. Machui, H.D. Schmidt, T. Ahmad, P. Kubis, S. Strohm, J. Hepp, A. Vetter, H.-J. Egelhaaf, C.J. Brabec, Printed semi-transparent large area organic photovoltaic modules with power conversion efficiencies of close to 5 %, Organic Electronics, Volume 45, 2017, Pages 209-214.
[8] Distler, A, Brabec, CJ, Egelhaaf, H-J. Organic photovoltaic modules with new world record efficiencies. Prog Photovolt Res Appl. 2021; 29: 24– 31.
[9] Huang, K-M, Wong, YQ, Lin, M-C, et al. Highly efficient and stable organic solar cell modules processed by blade coating with 5.6% module efficiency and active area of 216 cm2. Prog Photovolt Res Appl. 2019; 27: 264– 274.
[10] Huang, K., Lin, C., Chen, S., Li, C., Hu, C., Zhang, Y., Meng, H., Chang, C., Chao, Y., Zan, H., Huo, L. and Yu, P. (2019), Nonfullerene Polymer Solar Cell with Large Active Area of 216 cm2 and High Power Conversion Efficiency of 7.7%. Sol. RRL, 3: 1900071.
[11] Cheng-Yu Tsai, Yu-Hsiang Lin, Yi-Ming Chang, Jui-Chih Kao, Yu-Cheng Liang, Chia-Chen Liu, Jing Qiu, Lixin Wu, Chuang-Yi Liao, Huei-Shuan Tan, Yu-Chiang Chao, Sheng-Fu Horng, Hsiao-Wen Zan, Hsin-Fei Meng, Fenghong Li, Large area organic photovoltaic modules fabricated on a 30 cm by 20 cm substrate with a power conversion efficiency of 9.5%, Solar Energy Materials and Solar Cells, Volume 218, 2020, 110762.
[12] Jing, J., Dong, S., Zhang, K., Zhou, Z., Xue, Q., Song, Y., Du, Z., Ren, M., Huang, F., Semitransparent Organic Solar Cells with Efficiency Surpassing 15%. Adv. Energy Mater. 2022, 12, 2200453.
[13] Zhang, J., Xu, G., Tao, F., Zeng, G., Zhang, M., Yang, Y. (M.), Li, Y. W., Li, Y. F., Adv. Mater. 2019, 31, 1807159.
[14] Thomas Winkler, Hans Schmidt, Harald Flügge, Fabian Nikolayzik, Ihno Baumann, Stephan Schmale, Thomas Weimann, Peter Hinze, Hans-Hermann Johannes, Torsten Rabe, Sami Hamwi, Thomas Riedl, Wolfgang Kowalsky, Efficient large area semitransparent organic solar cells based on highly transparent and conductive ZTO/Ag/ZTO multilayer top electrodes, Organic Electronics, Volume 12, Issue 10,
2011, Pages 1612-1618.
[15] Ying Qian Wong, Hsin-Fei Meng, Hin Yong Wong, Ching Seong Tan, Chen-Yu Wu, Pei-Ting Tsai, Chih-Yu Chang, Sheng-Fu Horng, Hsiao-Wen Zan, Efficient semitransparent organic solar cells with good color perception and good color rendering by blade coating, Organic Electronics, Volume 43, 2017, Pages 196-206.
[16] Lin, Y., Adilbekova, B., Firdaus, Y., Yengel, E., Faber, H., Sajjad, M., Zheng, X., Yarali, E., Seitkhan, A., Bakr, O. M., El-Labban, A., Schwingenschlögl, U., Tung, V., McCulloch, I., Laquai, F., Anthopoulos, T. D., 17% Efficient Organic Solar Cells Based on Liquid Exfoliated WS2 as a Replacement for PEDOT:PSS. Adv. Mater. 2019, 31, 1902965.
[17] Y. Lin, B. Adilbekova, Y. Firdaus, E. Yengel, H. Faber, M. Sajjad, X. Zheng, E. Yarali, A. Seitkhan, O. M. Bakr and others, "17% efficient organic solar cells based on liquid exfoliated WS2 as a replacement for PEDOT: PSS," Advanced Materials, vol. 46, p. 1902965, 2019.
[18] Z. Zheng, H. Yao, L. Ye, Y. Xu, S. Zhang and J. Hou, "PBDB-T and its derivatives: A family of polymer donors enables over 17% efficiency in organic photovoltaics," Materials Today, pp. 115--130, 2020.
[19] J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson and others, "Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core," Joule, vol. 4, pp. 1140--1151, 2019.
[20] Yan, T. T., Song, W., Huang, J. M., Peng, R. X., Huang, L. K., Ge, Z. Y., 16.67% Rigid and 14.06% Flexible Organic Solar Cells Enabled by Ternary Heterojunction Strategy. Adv. Mater. 2019, 31, 1902210.
[21] S. Kwon, J. K. Park, J. Kim, G. Kim, K. Yu, J. Lee, Y. Jo, B. Kim, H. Kang, J. Kim, H. Kim and K. Lee, J. Mater. Chem. A, 2015, 3, 7719.
[22] Y. Chen, S. Wang, L. Xue, Z. Zhang, H. Li, L. Wu, Y. Wang, F. Li, F. Zhang and Y. Li, "Insights into the working mechanism of cathode interlayers in polymer solar cells via [(C 8 H 17) 4 N] 4 [SiW 12 O 40]," Journal of Materials Chemistry A, no. 48, pp. 19189--19196, 2016.
[23] Z.-G. Zhang, B. Qi, Z. Jin, D. Chi, Z. Qi, Y. Li and J. Wang, "Perylene diimides: a thickness-insensitive cathode interlayer for high performance polymer solar cells," Energy & Environmental Science, vol. 6, pp. 1966--1973, 2014.