研究生: |
陳建良 Jian-Liang Chen |
---|---|
論文名稱: |
具可變電壓直流鏈之永磁同步馬達驅動系統性能改善研究 PERFORMANCE IMPROVEMENT STUDY FOR A PERMANENT MAGNET SYNCHRONOUS MOTOR DRIVE WITH VARIABLE-VOLTAGE DC LINK |
指導教授: |
廖聰明
Chang-Ming Liaw |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 163 |
中文關鍵詞: | 永磁式同步馬達 、數位處理器ADMC401 、線圈電流追踨控制 、低頻切換式整流器 、激磁及換相時刻調控 、脈波寬度調變 |
外文關鍵詞: | PMSM), ADMC401, CCPWM, LF-SMR, field excitation and commutation instant tunings, PAM |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
相較於其它馬達,永磁式同步馬達(Permanent magnet synchronous motor, PMSM)具有高功率密度、高效率以及高加速能力等優點,使其已逐漸被廣泛地應用。本論文之目的在於從事以DSP為主全數位永磁同步馬達驅動系統之建立與其操控性能之改善研究。為了熟悉馬達之驅動運轉特性,首先探究其結構與主導方程式。在變頻馬達驅動系統之分析及設計上,馬達之等效電路參數是不可或缺者,本論文應用實用估測法以獲得PMSM之參數。為了從事所擬研究之性能測試,本論文建構一以數位處理器ADMC401為主之PMSM驅動系統,並配以感測器、信號處理電路及控制機構,使其能具有媲美於直流馬達之運轉操控性能。
馬達之動態響應特性深受其線圈電流波形之影響,本論文設計實現在abc及dq框之CCPWM機構,並評估比較兩者之控制性能。另外,亦設計強健電流控制器,使PMSM之線圈電流追踨控制性能較不受馬達參數變化與反電動式擾動之影響。再者,為了使驅動器之交流側具有較佳之引入電流電力品質並獲得可調控電壓之直流鏈,本論文設計一低頻切換式整流器做為此驅動系統之前級。在有關PMSM之調控研究上,首先由分析及實驗觀察場激磁及換相時刻調控對PMSM操控性能之影響及兩者間之等值性,據此,本論文發展一智慧型調控機構來自動決定換相時刻,以獲得最小之電流命令及等值之最佳轉矩產生能力。本論文所提所有控制方法之有效性均由實驗結果予以驗証。
Permanent magnet synchronous motor (PMSM) possesses the advantages of high power density, high efficiency and excellent acceleration ability, etc, and it has been extensively applied in many applications. The purpose of this thesis is to establish a fully digitally DSP-based PMSM drive with variable-voltage DC link and perform its driving performance improvement studies. In order to familiarize with the driving characteristics of a PMSM, its structure and governing equations are first studied. It is known that the motor circuit parameters are necessary for making the analysis and design of an inverter-fed motor drive. This thesis employs a practical estimation approach to obtain the parameters of the studied PMSM. For performing the experimental tests, a DSP ADMC401-based PMSM drive is established. By properly establishing the necessary sensors, signal conditioners and control schemes, it can be operated to have performances being comparable to those of a DC motor.
As generally recognized, the dynamic performance of a motor is much affected by its winding current waveforms. In the thesis, both the current-controlled PWM (CCPWM) in abc- and dq-domains are designed and implemented, and their control performances are comparatively evaluated. A robust current controller is developed to let the winding current tracking control response be rather insensitive to the changes of motor parameters and back EMF disturbance. Next, for obtaining well-regulated and variable DC-link voltage with better power quality in line drawn current, a LF-SMR is developed and applied to the established PMSM drive. As far as the tuning control for PMSM drive is concerned, the effects of field excitation and commutation instant tunings on the PMSM drive performances are first observed experimentally. Then, an intelligent tuning approach is developed to automatically determine the advance of commutation instant. The minimum current command is achieved to obtain better torque generating capability equivalently. Effectiveness of all the control schemes developed in this thesis is validated experimentally.
A. AC Motor Drives
[1] P. C. Sen, Principle of Electric Machines and Power Electronics, 2nd ed. Canada: John Wiley & Sons, Inc., 1997.
[2] J. M. D. Murphy and F. G. Turnbull, Power Electronic Control of AC Motors, Pergamon Press, Oxford, 1988.
[3] P. C. Krause, O. Wasynczuk and S. D. Sudhoff, Analysis of Electric Machine and Drive System. New York: The Institute of Electrical and Electronics Engineers, Inc., 1995.
[4] H. H. Moghbelli and M. H. Rashid, “Performance review of AC adjustable drives,” Conf. Rec. IEEE IECON, vol. 2, pp. 895-902, 1990.
[5] H. Murakami, Y. Honda, H. Kiriyama, S. Morimoto and Y. Takeda, “The performance comparison of SPMSM, IPMSM and SynRM in use as air-conditioning compressor,” Conf. Rec. IEEE IAS, vol. 2, pp. 840-845, 1999.
[6] G. L. Donner, W. L. Subler and S. T. Evon, “A motor primer- part I,” IEEE Trans. Ind. Applicat., vol. 36, no. 5, pp. 1455-1466, 2000.
[7] G. L. Donner, W. L. Subler and S. T. Evon, “Motor primer- part II,” IEEE Trans. Ind. Applicat., vol. 38, no. 4, pp. 955-965, 2002.
[8] G. L. Donner, W. L. Subler and S. T. Evon, “A motor primer- part III,” Conf. Rec. IEEE IAS, pp. 137-146, 2002.
[9] J. Holtz, “Pulsewidth modulation - a survey,” IEEE Trans. Ind. Electron., vol. 39, no. 5, pp. 410-420, 1992.
[10] D. Zmood and D. G. Holms, “Practical performance limitations for PWM strategies,” Conf. Rec. IEEE IAS, vol. 2, pp. 1245-1252, 1998.
[11] F. Blaabjerg and J. K. Pedersen, “Optimized design of a complete three-phase PWM-VS inverter,” IEEE Trans. Power Electron., vol. 12, no. 3, pp. 567-577, 1997.
B. Analysis, Design and Modeling of PMSM
[12] R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control. New Jersey: Prentice Hall Inc., 2001.
[13] P. Pillay and R. Krishnan, “Modeling, simulation and analysis of permanent-magnet motor drives, part I: the permanent-magnet synchronous motor drive,” IEEE Trans. Ind. Applicat., vol. 25, no. 2, pp. 265-273, 1989.
[14] D. C. Hanselman, Brushless Permanent-Magnet Motor Design. New York: McGraw Inc., 1994.
[15] G. H. Kang, J. P. Hong, G. T. Kim and J. W. Park, “Improved parameter modeling of interior permanent magnet synchronous motor based on finite element analysis,” IEEE Trans. Magn., vol. 36, no. 4, pp. 1867-1870, 2000.
[16] E. C. Lovelace, T. M. Jahns and J. H. Lang, “A saturating lumped-parameter model for an interior PM synchronous machine,” IEEE Trans. Ind. Applicat., vol. 38, no. 3, pp. 645-650, 2002.
[17] R. F. Schiferl and T. A. Lipo, “Power capability of salient pole permanent magnet synchronous motors in variable speed drive applications,” IEEE Trans. Ind. Applicat., vol. 26, no. 1, pp. 115-123, 1990.
[18] S. Morimoto, Y. Takeda and T. Hirasa, “Expansion of operating limits for permanent magnet motor by current vector control considering inverter capacity,” IEEE Trans. Ind. Applicat., vol. 26, no. 5, pp. 866-871, 1990.
[19] W. L. Soong and T. J. E. Miller, “Theoretical limitations to the field-weaking performance of the five classes of brushless synchronous AC motor drive,” Conf. IEEE IEMDC, no. 376, pp. 127-132, 1993.
[20] T. M. Jahns, “Component rating requirements for wide constant power operation of interior PM synchronous machine drives,” Conf. Rec. IEEE IAS, vol. 3, pp. 1697-1704, 2000.
C. Parameter Estimation
[21] IEC 34-4: Methods for determining synchronous machine quantities from tests, Internation Electrotechnical committee, June 1995.
[22] IEC 34-2: Methods for determining losses and efficiency of rotating electrical machinery from tests (excluding machines for traction vehicles), Internation Electrotechnical committee, Nov. 1996.
[23] S. Weisgerber, A. Proca and A. Keyhani, ”Estimation of permanent magnet motor parameters,” Conf. Rec. IEEE IAS, vol. 1, pp. 29-34, 1997.
[24] D. Y. Ohm, “Dynamic model of PM synchronous motors,” Available: http://www. drivetechinc.com/articles/IM97PM_Rev1forPDF.pdf.
[25] F. F. Bernal, A. G. Cerrada and R. Faure, “Determination of parameters in interior permanent-magnet synchronous motors with iron losses without torque measurement,” IEEE Trans. Ind. Applicat., vol. 37, no. 5, pp. 1265-1272, 2001.
[26] N. Urasaki, T. Senjyu and K. Uezato, “A novel calculation method for iron loss resistance suitable in modeling permanent-magnet synchronous motors,” IEEE Trans. Energy Conversion, vol. 18, no. 1, pp. 41-47, 2003.
D. Current Control
[27] N. Mohan, T. M. Undeland and W. P. Robbims, Power Electronics: Converters, Applications and Design. New York: John Wiley & Sons, 1995.
[28] B. K. Bose, Modern Power Electronics and AC Drives. New Jersey: Prentice Hall Inc., 2002.
[29] B. K. Bose, Power Electronics and Variable Frequency Drives. New York : The Institute of Electrical and Engineers, Inc. 1997.
[30] D. W. Novotny and T. A. Lipo, Vector Control and Dynamics of AC Drives, Clarendon Press, Oxford, 1996.
[31] T. M. Rowan and R. J. Kerkman, “A New Synchronous Current Regulator and Analysis of Current-Regulated PWM Inverter,” IEEE Trans. Ind. Applicat., vol. 22, no. 4, pp. 678-690, 1986
[32] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998.
[33] D. Y. Ohm and R. J. Oleksuk, “On practical digital current regulator design for PM synchronous motor drives,” Conf. Rec. IEEE APEC, vol. 1, pp. 56-63, 1998.
[34] J. K. Seok, J. S. Kim and S. K. Sul, “Overmodulation strategy for high-performance torque control,” IEEE Trans. Power Electron., vol. 13, no. 4, pp. 786-792, 1998.
[35] D. N. Zmood and D. G. Holmes, “Stationary frame current regulation of PWM Inverter with zero steady state error,” IEEE Trans. Power. Electron., vol. 18, no. 4, pp. 814-822, 2003.
[36] M. N. Uddin, T. S. Radwan, G. H. George and M. A. Rahman, “Performance of current controllers for VSI-fed IPMSM drive,” IEEE Trans. Ind. Applicat., vol. 36, no. 6, pp. 1531-1538, 2000.
[37] B. H. Bae and S. K. Sul, “A compensation method for time delay of full-digital synchronous frame current regulator of PWM AC drives,” IEEE Trans. Ind. Applicat., vol. 39, no. 3, pp. 802-810, 2003.
[38] C. M. Liaw and S. J. Chiang, “Robust control of multimodule current-mode controlled converters,” IEEE Trans. Power Electron., vol. 8, no. 4, pp. 455-465, 1993.
[39] T. H. Chen, K. C. Huang and C. M. Liaw, “High-Frequency switching-mode power amplifier for shaker armature excitation,” Proc. IEE Electric Power Applicat., vol. 144, no. 6, pp. 415-422, 1997.
[40] H. C. Chen, M. S. Huang, C. M. Liaw, Y. C. Chang, P. Y. Yu and J. M. Huang, “Robust current control for brushless DC motor,” Proc. IEE Electric Power Applicat., vol. 147, no. 6, pp. 503-512, 2000.
[41] M. F. Rahman, L. Zhone and K. W. Lim, “A DSP based instantaneous torque control strategy for interior permanent synchronous motor drive with wide speed range and reduced torque ripples,” Conf. Rec. IEEE IAS, vol. 1, pp. 518-524, 1996.
[42] M. N. Uddin, T. S. Radwan and M. A. Rahman, “Performance of interior permanent magnet motor drive over wide speed range,” IEEE Trans. Energy Conversion, vol. 17, no. 1, pp. 79-84, 2002.
[43] S. Morimoto, M. Sanada and Y. Takeda, “Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator,” IEEE Trans. Ind. Applicat., vol. 30, no. 4, pp. 920-926, 1994.
[44] R. Monajemy and R. Krishnan, ”Implementation strategies for concurrent flux weakening and torque control of the PM synchronous motor,” Conf. Rec. IEEE IAS, vol. 1 , pp. 238-245, 1995.
[45] J. H. Song, J. M. Kim and S. K. Sul, ”A new robust SPMSM control to parameter variations in flux weakening region,” Conf. Rec. IEEE IECON, vol. 2, pp. 1193-1198, 1996.
[46] C. Mademlis, J. Xypteras and N. Margaris, “Loss minimization in surface permanent-magnet synchronous motor drives,” IEEE Trans. Ind. Electorn., vol. 47, no. 1, pp. 115-122, 2000.
[47] C. Stancu, S. Hiti and F. Biais, “Maximum torque-per-ampere control of a saturated surface-mounted permanent magnet motor,” Conf. Rec. IEEE PESC, vol. 4, pp. 1667-1672, 2002.
[48] J. J. Chen and K. P. Chin, “Minimum copper loss flux-weakening control of surface mounted permanent magnet synchronous motors,” IEEE Trans. Power Electron., vol. 18, no. 4, pp. 929–936, 2003.
[49] S. Morimoto, Y. Takeda, K. Hatanaka, Y. Tong and T. Hirasa, “Design and control system of permanent magnet synchronous motors for high torque operation,” IEEE Trans. Ind. Applicat., vol. 29, no. 6, pp. 1150-1155, 1993.
[50] H. C. Chen and C. M. Liaw, “Sensorless control via intelligent commutation tuning for brushless DC motor,” Proc. IEE Electric Power Applicat., vol. 146, no. 6, pp. 678-684, 1999.
[51] C. C. Liaw, C. M. Liaw, H. C. Chang and C. M. Huang, “Robust current control and commutation tuning for an IPMSM drive,” Conf. Rec. IEEE APEC, vol. 2, pp. 1045-1051, 2003.
E. PAM/PWM Operation of PMSM
[52] B. K. Bose, “Power Electronics and Variable Frequency Drives: Technology and Applications” IEEE Press, New York, 1997.
[53] K. Taniguchi and A. Okumura, “A PAM inverter system for vector control of induction motor,” Conf. Rec. IEEE PCC, pp.478-483, 1993.
[54] K. Kimoto, Y. Kameko, K. Hashimoto and K. Ohnishi, “Decoupling control of an induction motor operated with a PAM inverter,” Conf. Rec. IEEE PES, pp. 1091-1098, 1988.
[55] K. Taniguchi, Y. Matano, T. Morizane and H. W. Lee, “PAM system for motor drive with soft-switching PFC converter,” Conf. Rec. IEEE IECON, vol. 3, pp. 1820-1825, 1996.
[56] K. Taniguchi, T. Sodeyama, T. Morizane and N. Kimura, “Novel strategy for soft-switching PAM inverter system,” Conf. Rec. IEEE PCC, vol. 3, pp. 1267-1272, 2002.
[57] K. Yamamoto, K. Shinohara and H. Makishima, ”Characteristics of permanent magnet synchronous motor driven by PWM inverter with voltage booster,” Conf. Rec. IEEE IEMDC, vol. 3, pp. 1556-1562, 2003.
[58] F. D. Kieferndorf, M. Forster and T. A. Lipo, ”Reduction of DC bus capacitor ripple current with PAM/PWM converter,” IEEE Trans. Ind. Applicat., vol. 40, no. 2, pp. 607-614, 2004.
F. Switching Mode Rectifier
[59] M. S. Dawande and G. K. Dubey, “Single phase switch mode rectifiers,” Conf. Rec. IEEE PESC, vol. 2, pp. 637-643, 1996.
[60] W. Huai and I. Batarseh, “Comparison of basic converter topologies for power factor correction,” in Proc. IEEE SEC, pp. 348-353, 1998.
[61] A. Kandianis and S. N. Manias, “A comparative evaluation of single-phase SMR converters with active power factor correction,” Conf. Rec. IEEE IECON, pp. 244-249, 1994.
[62] G. A. Karvelis, S. N. Manias and G. Kostakis, “A comparative evaluation of power converters used for current harmonics elimination,” Conf. Rec. IEEE HQPC, vol. 1, pp. 227–232, 1998.
[63] J. A. Pomilio, G. Spiazzi and S. Buso, “Comparison among high-frequency and line-frequency commutated rectifiers complying with IEC 61000-3-2 standards,” Conf. Rec. IEEE IAS, vol. 4, pp. 2218-2223, 2000.
[64] I. Suga, M. Kimata, Y. Ohnishi and R. Uchida, “New switching method for single-phase AC to DC converter,” Conf. Rec. IEEE PCC, pp. 93-98, 1993.
[65] J. A. Pomilio and G. Spiazzi, “A double-line-frequency commutated rectifier complying with IEC 1000-3-2 standards,” Conf. Rec. IEEE APEC, pp. 349-355, 1999.
[66] L. Rossetto, G. Spiazzi and P. Tenti, “Boost PFC with 100Hz switching frequency providing output voltage stabilization and compliance with EMC standards,” IEEE Trans. Ind. Applicat., vol. 36, no. 1, pp. 188-193, 2000.
[67] J. A. Pomilio and G. Spiazzi, “A low-inductance line-frequency commutated rectifier complying with EN 61000-3-2 standards,” IEEE Trans. Power Electron., vol. 17, no. 6, pp. 963-970, 2002.
G. Sensorless Control
[68] J. P. Johnson, M. Ehsani and Y. Guzelgunler, “Review of sensorless methods for brushless DC,” Conf. Rec. IEEE IAS, vol. 1, pp. 143-150, 1999.
[69] S. Morimoto, K. Kawamoto, M. Sanada and Y. Takeda, “Sensorless control strategy for salient-pole PMSM based on extended EMF in rotating reference frame,” IEEE Trans. Ind. Applicat., vol. 38, no. 4, pp. 1054-1061, 2002.
[70] Z. Chen, M. Mutuwo, S. Doki and S. Okuma, “An extended electromotive force model for sensorless control of interior permanent-magnet synchronous motor,” IEEE Trans. Ind. Electron., vol. 50, no. 2, pp. 288-294, 2003.
[71] S. Ogasawara and H. Akagi, “Implementation and position control performance of a position-sensorless IPM motor drive system based on magnetic saliency,” IEEE Trans. Ind. Applicat., vol. 34, no. 4, pp. 806-812, 1998.
[72] V. Petrovic and A. M. Stankovic, “Saliency-Based Position Estimation in PM Synchronous Motors ” Conf. Rec. IEEE IAS, vol. 2, pp. 801-806, 2001.
[73] B. Terzic and M. Jadric, “Design and implementation of the extended Kalman filter for the speed and rotor position estimation of brushless DC motor,” IEEE Trans. Ind. Electron., vol. 48, no. 6, pp. 1065-1073, 2001.
[74] S. Bolognani, L. Tubiana and M. Zigliotto, ”Extended kalman filter tuning in sensorless PMSM drives,” IEEE Trans. Ind. Applicat., vol. 39, no. 6, pp. 1741-1747, 2003.
[75] M. E. Haque, L. Zhong and M. F. Rahman, “A sensorless initial rotor position estimation scheme for a direct torque controlled interior permanent magnet synchronous motor drive,” Conf. Rec. IEEE APEC, vol. 2, pp. 879-884, 2001.
[76] J. I. Ha, K. Ide, T. Sawa and S. K. Sul, “Sensorless Position Control and Initial Position Estimation of an Interior Permanent Magnet Motor,” Conf. Rec. IEEE IAS, vol. 4, pp. 2607-2613, 2001.
[77] Y. S. Lai, F. S. Shyu and S. S. Tseng, “New initial position detection technique for three-phase brushless DC motor without position and current sensors,” IEEE Trans. Ind. Applicat., vol. 39, no. 2, pp. 485-491, 2003.
H. DSP-Based Digital Control and Digital Signal Processor
[78] N. S. Nise, Control System Engineering, 3rd ed. John Wiley and Sons. Inc., 2000.
[79] G. F. Franklin, J. D. Powell and A. Emami-Naeini, Feedback Control of Dynamic System, 4th ed. Prentice Hall Inc., 2002.
[80] F. Nekoogar and G. Moriry, Digital Control and Digital Signal Processing, Prentice Hall Inc., 1999.
[81] G. F. Franklin, J. D. Powell and M. Workman, Digital Control of Dynamic Systems, 3rd ed. Addison Wesley Inc., 1998.
[82] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 2nd ed. New Jersey: Prentice Hall Inc., 1999.
[83] “Considerations for Selecting a DSP Processor,” Application Note, AN-393, 1994.
[84] “Fixed-Point Blockset User’s Guide,” The Math Works Inc., 2000.
[85] “DSP Selection Guide,” Analog Devices Inc., 2000.
[86] F. Moynihan, ”High-Performance Motion Control”, Analog Devices Inc., USA, 1999.
[87] A. Murray and P. Kettle, “The DSP Performance Edge in Variable Speed Drives”, Analog Devices Inc., USA, 1996.
[88] A. Murray, P. Kettle, A. Margio and F. Moynihan, “Advances in DSP Based Motor Control Solutions”, Analog Devices Inc., USA, 1995.
[89] “Single-Chip, DSP-Based High Performance Motor Controller ADMC 401, “Analog Devices Inc., 2000.
[90] “ADSP-2100 Family User’s Manual,” Analog Devices Inc., 1995.