簡易檢索 / 詳目顯示

研究生: 陳莛元
Chen, Ting-Yuan
論文名稱: 去輕子化對核心坍縮超新星爆炸機制與多信使訊號的影響
Impact of deleptonization rates on Core-Collapse Supernova Engines and Multimessenger signals
指導教授: 潘國全
Pan, Kuo-Chuan
口試委員: 吳孟儒
Wu, Meng-Ru
楊湘怡
Yang, Hsiang-Yi
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 21
中文關鍵詞: 核心坍縮超新星多信使信號
外文關鍵詞: Core-collapse Supernova, Multimessenger signals
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在恆星演化的末期,因重力而造成的核心坍縮,在這期間,電子捕獲的過程主導著核心的去輕子化,因此描述了反彈衝擊的位置及能量,而這些變化也會影響其多信使信號,可使我們在未來觀測超新星爆炸中,提供相當的資訊。在我們的研究當中,我們將去輕子化的公式參數化,並透過微中子轉移的二維流體力學模擬,來研究去輕子化在不同的恆星轉速時所造成的影響,包含其核心的變化,或是來自核心坍縮超新星重力波的訊號。


    During the collapse of a stellar core, the electron capture process dominates the core deleptonization and, therefore, describes the location and energy of the bounce shock, which should provide unique multimessenger signals that could be used as a constraint in future observations. In this work, we use a parametrized deleptonization formula to investigate the impact of deleptonization and stellar rotation on the gravitational wave signals from core-collapse supernovae via two-dimensional hydrodynamics simulations with neutrino transport. In particular, we focus on gravitational-wave emissions at around core bounce and during the prompt convection phase.

    摘要 致謝 第一章:介紹------------1 第二章:數值模擬方法-----2 第三章:結果------------4 第四章:結論------------18

    [1] Arnett, W. D. 1977, , 35, 145. doi:10.1086/190472
    [2] Hoyle, F. & Fowler, W. A. 1960, , 132, 565. doi:10.1086/146963
    [3] Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016, , 116, 061102.doi:10.1103/PhysRevLett.116.061102
    [4] Colgate, S. A. & White, R. H. 1966, , 143, 626. doi:10.1086/148549
    [5] Bruenn, S. W., Mezzacappa, A., Hix, W. R., et al. 2013, , 767, L6.[6] Kuroda, T., Fischer, T., Takiwaki, T., et al. 2021, arXiv:2109.01508
    [7] Bisnovatyi-Kogan, G. S. 1970, , 47, 813
    [8] Matsumoto, J., Takiwaki, T., Kotake, K., et al. 2020, , 499, 4174.doi:10.1093/mnras/staa3095
    [9] Richers, S., Ott, C. D., Abdikamalov, E., et al. 2017, , 95, 063019.doi:10.1103/PhysRevD.95.063019 doi:10.1088/2041-8205/767/1/L6
    [10] Boccioli, L., Mathews, G. J., Suh, I.-S., et al. 2021, arXiv:2110.05544
    [11] Ott, C. D., Burrows, A., Livne, E., et al. 2004, , 600, 834. doi:10.1086/379822
    [12] Pajkos, M. A., Couch, S. M., Pan, K.-C., et al. 2019, , 878, 13.doi:10.3847/1538-4357/ab1de2
    [13] Pan, K.-C., Mattes, C., O’Connor, E. P., et al. 2019, Journal of Physics GNuclear Physics, 46, 014001. doi:10.1088/1361-6471/aaed51
    [14] S. W. Bruenn, Astrophys. J. Suppl.58(1985), 771-841 doi:10.1086/191056
    [15] Fryxell, B., Olson, K., Ricker, P., et al. 2000, , 131, 273. doi:10.1086/317361
    [16] Dubey, A., Reid, L. B., Weide, K., et al. 2009, arXiv:0903.4875
    [17] Steiner, A. W., Hempel, M., & Fischer, T. 2013, , 774, 17. doi:10.1088/0004-637X/774/1/17
    [18] Marek, A., Dimmelmeier, H., Janka, H.-T., et al. 2006, , 445, 273.doi:10.1051/0004-6361:20052840
    [19] Liebend ̈orfer, M., Whitehouse, S. C., & Fischer, T. 2009, , 698, 1174.doi:10.1088/0004-637X/698/2/1174
    [20] Woosley, S. E. & Heger, A. 2007, , 442, 269. doi:10.1016/j.physrep.2007.02.009
    [21] Liebend ̈orfer, M., Rampp, M., Janka, H.-T., et al. 2005, , 620, 840.doi:10.1086/427203
    [22] Eriguchi, Y. & Mueller, E. 1985, , 146, 260
    [23] Sukhbold, T., Ertl, T., Woosley, S. E., et al. 2016, , 821, 38. doi:10.3847/0004-637X/821/1/38
    [24] Janka, H.-T. 2012, Annual Review of Nuclear and Particle Science, 62, 407.doi:10.1146/annurev-nucl-102711-094901
    [25] Summa, A., Hanke, F., Janka, H.-T., et al. 2016, , 825, 6. doi:10.3847/0004-637X/825/1/6
    [26] Abdikamalov, E., Pagliaroli, G., & Radice, D. 2020, arXiv:2010.04356

    QR CODE