簡易檢索 / 詳目顯示

研究生: 林青燕
論文名稱: Effects of surface roughness on electronic states in quantum wells
指導教授: Chung-Yu Mou
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 84
中文關鍵詞: randommatrixsurfaceroughness
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • We make use of an e®ective Hamiltonian which succeeds in mapping surface configurations
    to potential formulations to study the two dimensional quantum wells with rough
    interfaces. We investigate two types of surface configurations: point defects and real random
    roughness. We also study two roughness e®ects including local changes of widths as
    well as curvature e®ect. In eigenlevel statistics we find the distributions of nearest level
    spacings satisfy well the interpolation formula given by Izrailev, and thus we obtain the
    ensemble average specific heat in low temperature limit is proportional to T1+°, where °
    is the fitting parameter of the Izrailev formula and is related to the Fermi level. And in
    eigenfunction statistics, the localization property is described better by the scaling behavior
    of participation numbers than by the participation numbers only. The connection
    between eigenlevel statistics and eigenfunction statistics is also verified.


    Contents 1 Introduction 1 2 Theoretical Formulation 5 3 Quantum well with one hemispheric bump: A simple example 9 4 Random surfaces with point defects 17 4.1 Spectral Statistics . . . . . . . . . 17 4.1.1 Global behavior of the Density of States . . . 17 4.1.2 Deeper examination of typical levels . . . .. 18 4.1.3 Local behavior of short-range fluctuations . . . 22 4.1.4 Local behavior of long-range fluctuations . . 25 4.2 Eigenfunction statistics . . . . . . . . . . . 30 4.2.1 Direct images of typical wavefunctions . . . . . 30 4.2.2 Localization properties . . . . . . . . . 33 4.2.3 Scaling properties . . . . . . . 38 5 Surfaces with Real Random Roughness 41 5.0.4 Surface amplitude distribution function . . . 41 5.1 Spectral Statistics . . . . . . . . . . 44 5.1.1 Global behavior of the Density of States . . . . 44 5.1.2 Deeper examine of some typical levels . . . . . 46 5.1.3 Local behavior of short-range fluctuations . . 46 5.1.4 Local behavior of long-range fluctuations . . . 46 5.2 Eigenfunction statistics . . . . 50 5.2.1 Direct images of typical wavefunctions . . . . 50 5.2.2 Localization and scaling properties . . . . 54 5.3 Surfaces with small number of sinusoidal modulations 58 5.4 Curvature Effect . . . . . . . . . 63 6 Applications: the statistics of electron energy levels and specific heat 71 7 Concluding remarks 77 A Finite difference methods 79

    Bibliography
    [1] H. Sakaki, M. Tanka, and J. Yoshino, Jpn. J. Appl. Phys. 24. L417 (1983)
    [2] V.I. Fal'ko and K.B. Efetov, Phys. Rev. 50, 11267 (1995)
    [3] Y. Alhassid, Rev. Mod. Phys. 72, 895, (2000)
    [4] O. Bohigas, in Chaos in Classical and Quantum Physics, Proceedings of the Les Houches Summer School, Session LII, edited by M.J. Giannoni, A. Voros, and J.Zinn-Justin (Elsevier New York,1991)
    [5] Charles E. Porter, Statistical theories of spectra: Fluctuations (Academic Press. New York. 1965)
    [6] Moshe Carmeli, Statistical Theory And Random Matrices, (Marcel Dekker. INC. 1983)
    [7] T.A. Brody, Lett. J. Flores, J.B. French, P.A. Mello, A. Pandey, S.S. M. Wong, Ame. Phy. Soc., 53, 385 (1981)
    [8] M.L. Mehta, Random Matrices (Academic Press. New York. 1991)
    [9] Anders Andersen, Phys. A Topics in Random Matrix Theory, (The Niels Bohr Institute,The Universty of Copenhagen, 1999)
    [10] Thomas GuHR, Axel MULLER-GROELING, Hans A. WELDENMULLER T.Vetterling, Brian P. Flannery, Phys. Rep. 299 189 (1998)
    [11] Pragya Shukla, Phys. A 315, 53 (2002)
    [12] M. Robnik, Cha. Sol. Frac. 5, 1195 (1995)
    [13] E. Louis, J.A. Verges, E. Cuevas, M. Ortu~no, Z. Phys. B 103, 297 (1997)
    [14] E. Cuevas, E. Louis, and J.A. Verge s, Phys. Rev. Lett.77, 1970 (1996)
    [15] E. Cuevas, E. Louis, J.A. Verge s, M. Ortu~no. Phys. B 230-232, 803 (1997)
    [16] Chung-Yu Mou and Tzay-ming Hong, Phys. Rev. B 61,12612 (2000)
    [17] Naomichi Hatano, David R. Nelson, Phys. Rev. Lett. 77, 570(1996)
    [18] Naomichi Hatano, David R. Nelson, Phys. Rev. B 56, 8651(1997)
    [19] Naomichi Hatano, David R. Nelson, Phys. Rev. B 58, 8384 (1998)
    [20] David R. Nelson, Nadav M. Shnerb, Phys. Rev. E 58, 1383 (1998)
    [21] Felix M. IZRAILEV, Phys. Rep. 196, 299 (1990)
    [22] E. Cuevas, M Ortu~no, J Ruiz, e Louis and J A Verges, J. Phys: Cond. Matt. 10, 295 (1998)
    [23] Bernhard Kramer and Angus MacKinnon, Rep. Prog. Phys. 56, 1489, (1993)
    [24] A. Eilmes, R.A. Romer, M. Schreiber, Eur. Phy. J.B. 1, 29, (1998)
    [25] D Weaire and V Srivastava, J. Phys. C: Solid States Phys. 10, 4309, (1977)
    [26] H-J Stockmann, Quantum Chaos (Cambridge University Press. 2000)
    [27] W.P. Halperin, Rev. Mod. Phys. 58, 533 (1986)
    [28] Numerical Precipes in Fortran 77, Second Edition, Volume 1 of Fortran Numerical Recipes, William H. Press, edited by Saul A. Teukosky, William

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE