研究生: |
林青燕 |
---|---|
論文名稱: |
Effects of surface roughness on electronic states in quantum wells |
指導教授: | Chung-Yu Mou |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 英文 |
論文頁數: | 84 |
中文關鍵詞: | random 、matrix 、surface 、roughness |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
We make use of an e®ective Hamiltonian which succeeds in mapping surface configurations
to potential formulations to study the two dimensional quantum wells with rough
interfaces. We investigate two types of surface configurations: point defects and real random
roughness. We also study two roughness e®ects including local changes of widths as
well as curvature e®ect. In eigenlevel statistics we find the distributions of nearest level
spacings satisfy well the interpolation formula given by Izrailev, and thus we obtain the
ensemble average specific heat in low temperature limit is proportional to T1+°, where °
is the fitting parameter of the Izrailev formula and is related to the Fermi level. And in
eigenfunction statistics, the localization property is described better by the scaling behavior
of participation numbers than by the participation numbers only. The connection
between eigenlevel statistics and eigenfunction statistics is also verified.
Bibliography
[1] H. Sakaki, M. Tanka, and J. Yoshino, Jpn. J. Appl. Phys. 24. L417 (1983)
[2] V.I. Fal'ko and K.B. Efetov, Phys. Rev. 50, 11267 (1995)
[3] Y. Alhassid, Rev. Mod. Phys. 72, 895, (2000)
[4] O. Bohigas, in Chaos in Classical and Quantum Physics, Proceedings of the Les Houches Summer School, Session LII, edited by M.J. Giannoni, A. Voros, and J.Zinn-Justin (Elsevier New York,1991)
[5] Charles E. Porter, Statistical theories of spectra: Fluctuations (Academic Press. New York. 1965)
[6] Moshe Carmeli, Statistical Theory And Random Matrices, (Marcel Dekker. INC. 1983)
[7] T.A. Brody, Lett. J. Flores, J.B. French, P.A. Mello, A. Pandey, S.S. M. Wong, Ame. Phy. Soc., 53, 385 (1981)
[8] M.L. Mehta, Random Matrices (Academic Press. New York. 1991)
[9] Anders Andersen, Phys. A Topics in Random Matrix Theory, (The Niels Bohr Institute,The Universty of Copenhagen, 1999)
[10] Thomas GuHR, Axel MULLER-GROELING, Hans A. WELDENMULLER T.Vetterling, Brian P. Flannery, Phys. Rep. 299 189 (1998)
[11] Pragya Shukla, Phys. A 315, 53 (2002)
[12] M. Robnik, Cha. Sol. Frac. 5, 1195 (1995)
[13] E. Louis, J.A. Verges, E. Cuevas, M. Ortu~no, Z. Phys. B 103, 297 (1997)
[14] E. Cuevas, E. Louis, and J.A. Verge s, Phys. Rev. Lett.77, 1970 (1996)
[15] E. Cuevas, E. Louis, J.A. Verge s, M. Ortu~no. Phys. B 230-232, 803 (1997)
[16] Chung-Yu Mou and Tzay-ming Hong, Phys. Rev. B 61,12612 (2000)
[17] Naomichi Hatano, David R. Nelson, Phys. Rev. Lett. 77, 570(1996)
[18] Naomichi Hatano, David R. Nelson, Phys. Rev. B 56, 8651(1997)
[19] Naomichi Hatano, David R. Nelson, Phys. Rev. B 58, 8384 (1998)
[20] David R. Nelson, Nadav M. Shnerb, Phys. Rev. E 58, 1383 (1998)
[21] Felix M. IZRAILEV, Phys. Rep. 196, 299 (1990)
[22] E. Cuevas, M Ortu~no, J Ruiz, e Louis and J A Verges, J. Phys: Cond. Matt. 10, 295 (1998)
[23] Bernhard Kramer and Angus MacKinnon, Rep. Prog. Phys. 56, 1489, (1993)
[24] A. Eilmes, R.A. Romer, M. Schreiber, Eur. Phy. J.B. 1, 29, (1998)
[25] D Weaire and V Srivastava, J. Phys. C: Solid States Phys. 10, 4309, (1977)
[26] H-J Stockmann, Quantum Chaos (Cambridge University Press. 2000)
[27] W.P. Halperin, Rev. Mod. Phys. 58, 533 (1986)
[28] Numerical Precipes in Fortran 77, Second Edition, Volume 1 of Fortran Numerical Recipes, William H. Press, edited by Saul A. Teukosky, William