簡易檢索 / 詳目顯示

研究生: 周偉堯
Chou, Wei-Yao
論文名稱: Prediction and analysis of in silico structure and ligand-binding residue for carbohydrate binding module
碳水化合物結合模組之立體結構及配體結合胺基酸預測與分析
指導教授: 唐傳義
Tang, Chuan Yi
張大慈
Chang, Dah-Tsyr
口試委員: 唐傳義
張大慈
黃鎮剛
白敦文
盧錦隆
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2011
畢業學年度: 100
語文別: 英文
論文頁數: 89
中文關鍵詞: 碳水化合物結合模組親水性芳香環胺基酸二級結構元素序列排比同源模擬法配體結合胺基酸預測
外文關鍵詞: Carbohydrate binding module, Hydrophilic aromatic residue, Secondary structure element, Sequence alignment, Homology modeling, Ligand-binding residue prediction
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 碳水化合物結合模組(carbohydrate binding module; CBM)為碳水化合物合成、代謝、運輸相關酵素的獨立功能區域,其功能為提升天然基質聚合物如澱粉及纖維素催化效率,但目前只有少部份碳水化合物結合區之三級結構已由實驗解出。蛋白質之模擬結構可由計算方法預測,其中同源結構模擬法最重要的因素為精確的目標及樣板序列排比。然而,碳水化合物結合模組彼此之間序列相同程度極低,以致一般的序列排比及生物資訊演算法不易準確預測其三級結構。本論文發現在碳水化合物結合區域家族中親水性芳香環胺基酸(hydrophilic aromatic residues; HARs)及二級結構元素具有關鍵的保留性,結合’附加特徵排比’ (feature-incorporated alignment; FIA)方法可準確比對碳水化合物結合模組中的重要特徵。本論文提出具有改善的序列排比技術可進一步整合至模擬結構建立,明顯提升預測結構的可靠度並偵測潛在的配體結合芳香環胺基酸。各項指標顯示基於FIA所辨識的親水性芳香環胺基酸及預測的三級結構與已知生物實驗結果相近,且對未經實驗確認的預測結果擁有高度的合理性。

    本論文所提出的FIA與其他六個知名領先的序列排比方法之中,FIA的排比結果具有最高的平均序列相同程度(sequence identity)及序列相似程度(sequence similarity),且整合FIA產生的模擬結構亦具有最低的平均表面位能z值(surface-potential z score),各項目改善數據都具備非常顯著的統計意義。另外親水性芳香環胺基酸可直接用於預測潛在的配體結合胺基酸,比一般的方法具較高的真陽性率。最後,本研究廣泛地針對碳水化合物結合模組家族序列預測其三級結構,並將結果存放於「碳水化合物結合區域預測結構資料庫」(Database of Simulated CBM structures; DS-CBMs)中,線上結構預測系統亦支援即時預測使用者上傳之碳水化合物結合模組序列之結構。


    Carbohydrate binding modules (CBMs) have been recognized as attaching to carbohydrate-related enzymes to upgrade catalytic efficiency of natural biological polymers including starch and cellulose. Because only a relatively small number of CBM structures have been resolved, alternatively, in silico structures can be established by computational modeling approaches and an accurate target-template sequence alignment is the most deterministic factor for homology modeling. However, the major bottleneck for qualified CBM structure simulation is low sequence identities among CBM members. Fortunately, the conserved characteristics of hydrophilic aromatic residues (HARs) and secondary structure elements were observed and taken into account in feature-incorporated alignment (FIA) to match up the core motifs among CBMs. In this thesis, the improved alignment results were integrated to in silico structure building to increase reliability of predicted structures and to detect potential ligand-binding aromatic residues.

    The identified HARs and predicted structures deriving from FIA were close to in vitro results and possessed high accuracy and reliability under various criteria. Among FIA and six leading alignment programs, FIA achieved the highest sequence identity and sequence similarity on average with statistically significance. In addition, in silico structures deriving from FIA reported lowest average surface-potential z score with statistically significance. Furthermore, HAR identification can be applied to predict ligand-binding aromatic residues with high true positive rates. Finally, this work comprehensively predicted structures for CBM members and deposited them into a repository named Database of Simulated CBM structures (DS-CBMs). Subsequently, online structure modeling system was developed to allow users to predict their own CBM structures.

    摘要 i Abstract ii 誌謝 iv Table of contents v List of figures vi List of tables vii List of appendices viii Abbreviations ix Chapter 1 Introduction 1 Chapter 2 Methods 8 2.1 Secondary structure prediction 9 2.2 Hydrophilic aromatic residue identification 10 2.3 Target-template alignment by FIA 12 2.4 Template filter 16 2.5 Structure model building and evaluation 17 2.6 FIA illustration 18 Chapter 3 Materials 20 Chapter 4 Results 23 4.1 Functional validation 23 4.2 Prediction analysis 27 4.3 Comparison of computational performance 28 Chapter 5 Discussion 34 5.1 Correlation of hydrophilic aromatic residue 34 5.2 Template choice 35 5.3 Key factors for homology modeling 36 5.4 Case study: CBM20 and CBM21 38 5.5 How to use DS-CBMs 39 5.6 Application on non-CBMs 40 5.7 Application on non-CBMs 41 5.8 Application on non-CBMs 42 Publication list 76 Honors and awards 78 References 79

    Abbate, E.A., Voitenleitner, C. and Botchan, M.R. (2006) Structure of the papillomavirus DNA-tethering complex E2:Brd4 and a peptide that ablates HPV chromosomal association. Mol Cell, 24, 877-889.
    Abbott, D.W., Hrynuik, S. and Boraston, A.B. (2007) Identification and characterization of a novel periplasmic polygalacturonic acid binding protein from Yersinia enterolitica. J Mol Biol, 367, 1023-1033.
    Adams, T.E., et al. (2004) The crystal structure of activated protein C-inactivated bovine factor Va: Implications for cofactor function. Proc Natl Acad Sci U S A, 101, 8918-8923.
    Appleton, B.A., et al. (2007) Structural studies of neuropilin/antibody complexes provide insights into semaphorin and VEGF binding. EMBO J, 26, 4902-4912.
    Aragao, K.S., et al. (2008) Structure determination of Discoidin II from Dictyostelium discoideum and carbohydrate binding properties of the lectin domain. Proteins, 73, 43-52.
    Arndt, J.W., et al. (2005) The structure of the neurotoxin-associated protein HA33/A from Clostridium botulinum suggests a reoccurring beta-trefoil fold in the progenitor toxin complex. J Mol Biol, 346, 1083-1093.
    Azzi, A., et al. (2009) Crystal structure of native cinnamomin isoform III and its comparison with other ribosome inactivating proteins. Proteins, 74, 250-255.
    Bae, B., et al. (2008) Molecular basis for the selectivity and specificity of ligand recognition by the family 16 carbohydrate-binding modules from Thermoanaerobacterium polysaccharolyticum ManA. J Biol Chem, 283, 12415-12425.
    Bagaria, A., et al. (2006) Structure-function analysis and insights into the reduced toxicity of Abrus precatorius agglutinin I in relation to abrin. J Biol Chem, 281, 34465-34474.
    Bahr, A., et al. (2001) BAliBASE (Benchmark Alignment dataBASE): enhancements for repeats, transmembrane sequences and circular permutations. Nucleic Acids Res, 29, 323-326.
    Bianchet, M.A., et al. (2002) A novel fucose recognition fold involved in innate immunity. Nat Struct Biol, 9, 628-634.
    Bianchet, M.A., et al. (2010) Structure and specificity of a binary tandem domain F-lectin from striped bass (Morone saxatilis). J Mol Biol, 401, 239-252.
    Bolam, D.N., et al. (1998) Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity. Biochem J, 331 ( Pt 3), 775-781.
    Bolam, D.N., et al. (2001) Evidence for synergy between family 2b carbohydrate binding modules in Cellulomonas fimi xylanase 11A. Biochemistry, 40, 2468-2477.
    Bonneau, R. and Baker, D. (2001) Ab initio protein structure prediction: progress and prospects. Annu Rev Biophys Biomol Struct, 30, 173-189.
    Boraston, A.B., Ficko-Blean, E. and Healey, M. (2007) Carbohydrate recognition by a large sialidase toxin from Clostridium perfringens. Biochemistry, 46, 11352-11360.
    Boraston, A.B., et al. (2006) A structural and functional analysis of alpha-glucan recognition by family 25 and 26 carbohydrate-binding modules reveals a conserved mode of starch recognition. J Biol Chem, 281, 587-598.
    Boraston, A.B., et al. (2003) Structure and ligand binding of carbohydrate-binding module CsCBM6-3 reveals similarities with fucose-specific lectins and "galactose-binding" domains. J Mol Biol, 327, 659-669.
    Boraston, A.B., et al. (2002) Differential oligosaccharide recognition by evolutionarily-related beta-1,4 and beta-1,3 glucan-binding modules. J Mol Biol, 319, 1143-1156.
    Boraston, A.B., Wang, D. and Burke, R.D. (2006) Blood group antigen recognition by a Streptococcus pneumoniae virulence factor. J Biol Chem, 281, 35263-35271.
    Cantarel, B.L., et al. (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res, 37, D233-238.
    Charnock, S.J., et al. (2000) The X6 "thermostabilizing" domains of xylanases are carbohydrate-binding modules: structure and biochemistry of the Clostridium thermocellum X6b domain. Biochemistry, 39, 5013-5021.
    Chou, W.I., et al. (2006) The family 21 carbohydrate-binding module of glucoamylase from Rhizopus oryzae consists of two sites playing distinct roles in ligand binding. Biochem J, 396, 469-477.
    Chou, W.Y., et al. (2010) Feature-incorporated alignment based ligand-binding residue prediction for carbohydrate-binding modules. Bioinformatics, 26, 1022-1028.
    Christiansen, C., et al. (2009) The carbohydrate-binding module family 20--diversity, structure, and function. FEBS J, 276, 5006-5029.
    Dauter, Z., et al. (1999) X-ray structure of Novamyl, the five-domain "maltogenic" alpha-amylase from Bacillus stearothermophilus: maltose and acarbose complexes at 1.7A resolution. Biochemistry, 38, 8385-8392.
    Do, C.B., et al. (2005) ProbCons: Probabilistic consistency-based multiple sequence alignment. Genome Res, 15, 330-340.
    Edgar, R.C. (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 5, 113.
    Ficko-Blean, E. and Boraston, A.B. (2006) The interaction of a carbohydrate-binding module from a Clostridium perfringens N-acetyl-beta-hexosaminidase with its carbohydrate receptor. J Biol Chem, 281, 37748-37757.
    Ficko-Blean, E. and Boraston, A.B. (2009) N-acetylglucosamine recognition by a family 32 carbohydrate-binding module from Clostridium perfringens NagH. J Mol Biol, 390, 208-220.
    Ficko-Blean, E., et al. (2009) Portrait of an enzyme, a complete structural analysis of a multimodular {beta}-N-acetylglucosaminidase from Clostridium perfringens. J Biol Chem, 284, 9876-9884.
    Ficko-Blean, E., et al. (2008) Structural and mechanistic insight into the basis of mucopolysaccharidosis IIIB. Proc Natl Acad Sci U S A, 105, 6560-6565.
    Finn, R.D., et al. (2010) The Pfam protein families database. Nucleic Acids Res, 38, D211-222.
    Firbank, S.J., et al. (2001) Crystal structure of the precursor of galactose oxidase: an unusual self-processing enzyme. Proc Natl Acad Sci U S A, 98, 12932-12937.
    Fischer, J.D., Mayer, C.E. and Soding, J. (2008) Prediction of protein functional residues from sequence by probability density estimation. Bioinformatics, 24, 613-620.
    Fritz, T.A., et al. (2004) The beginnings of mucin biosynthesis: the crystal structure of UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferase-T1. Proc Natl Acad Sci U S A, 101, 15307-15312.
    Fritz, T.A., Raman, J. and Tabak, L.A. (2006) Dynamic association between the catalytic and lectin domains of human UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferase-2. J Biol Chem, 281, 8613-8619.
    Ginalski, K. (2006) Comparative modeling for protein structure prediction. Curr Opin Struct Biol, 16, 172-177.
    Gotoh, O. (1982) An improved algorithm for matching biological sequences. J Mol Biol, 162, 705-708.
    Gregg, K.J., et al. (2008) Divergent modes of glycan recognition by a new family of carbohydrate-binding modules. J Biol Chem, 283, 12604-12613.
    Guillen, D., Sanchez, S. and Rodriguez-Sanoja, R. (2010) Carbohydrate-binding domains: multiplicity of biological roles. Appl Microbiol Biotechnol, 85, 1241-1249.
    Gut, H., King, S.J. and Walsh, M.A. (2008) Structural and functional studies of Streptococcus pneumoniae neuraminidase B: An intramolecular trans-sialidase. FEBS Lett, 582, 3348-3352.
    Harata, K., et al. (1996) X-ray structure of cyclodextrin glucanotransferase from alkalophilic Bacillus sp. 1011. Comparison of two independent molecules at 1.8 A resolution. Acta Crystallogr D Biol Crystallogr, 52, 1136-1145.
    Hashimoto, H. (2006) Recent structural studies of carbohydrate-binding modules. Cell Mol Life Sci, 63, 2954-2967.
    Henikoff, S. and Henikoff, J.G. (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A, 89, 10915-10919.
    Henshaw, J., et al. (2006) Family 6 carbohydrate binding modules in beta-agarases display exquisite selectivity for the non-reducing termini of agarose chains. J Biol Chem, 281, 17099-17107.
    Hirata, A., et al. (2004) Engineering of the pH optimum of Bacillus cereus beta-amylase: conversion of the pH optimum from a bacterial type to a higher-plant type. Biochemistry, 43, 12523-12531.
    Hondoh, H., Kuriki, T. and Matsuura, Y. (2003) Three-dimensional structure and substrate binding of Bacillus stearothermophilus neopullulanase. J Mol Biol, 326, 177-188.
    Ichikawa, O., et al. (2007) Structural basis of the collagen-binding mode of discoidin domain receptor 2. EMBO J, 26, 4168-4176.
    Inoue, K., et al. (2003) Structural analysis by X-ray crystallography and calorimetry of a haemagglutinin component (HA1) of the progenitor toxin from Clostridium botulinum. Microbiology, 149, 3361-3370.
    Jamal-Talabani, S., et al. (2004) Ab initio structure determination and functional characterization of CBM36; a new family of calcium-dependent carbohydrate binding modules. Structure, 12, 1177-1187.
    Jamal, S., et al. (2004) X-ray crystal structure of a non-crystalline cellulose-specific carbohydrate-binding module: CBM28. J Mol Biol, 339, 253-258.
    Jones, D. and Thornton, J. (1993) Protein fold recognition. J Comput Aided Mol Des, 7, 439-456.
    Kamitori, S., et al. (2002) Crystal structures and structural comparison of Thermoactinomyces vulgaris R-47 alpha-amylase 1 (TVAI) at 1.6 A resolution and alpha-amylase 2 (TVAII) at 2.3 A resolution. J Mol Biol, 318, 443-453.
    Katoh, K., et al. (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res, 30, 3059-3066.
    Katoh, K. and Toh, H. (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform, 9, 286-298.
    Kelly, R.M., et al. (2008) Elimination of competing hydrolysis and coupling side reactions of a cyclodextrin glucanotransferase by directed evolution. Biochem J, 413, 517-525.
    Kerff, F., et al. (2008) Crystal structure and activity of Bacillus subtilis YoaJ (EXLX1), a bacterial expansin that promotes root colonization. Proc Natl Acad Sci U S A, 105, 16876-16881.
    Kim, J.S., et al. (1999) Crystal structure of a maltogenic amylase provides insights into a catalytic versatility. J Biol Chem, 274, 26279-26286.
    King, R.D. and Sternberg, M.J. (1996) Identification and application of the concepts important for accurate and reliable protein secondary structure prediction. Protein Sci, 5, 2298-2310.
    Klein, C. and Schulz, G.E. (1991) Structure of cyclodextrin glycosyltransferase refined at 2.0 A resolution. J Mol Biol, 217, 737-750.
    Kraulis, J., et al. (1989) Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry, 28, 7241-7257.
    Krauspenhaar, R., et al. (2002) Crystallisation under microgravity of mistletoe lectin I from Viscum album with adenine monophosphate and the crystal structure at 1.9 A resolution. Acta Crystallogr D Biol Crystallogr, 58, 1704-1707.
    Kubota, T., et al. (2006) Structural basis of carbohydrate transfer activity by human UDP-GalNAc: polypeptide alpha-N-acetylgalactosaminyltransferase (pp-GalNAc-T10). J Mol Biol, 359, 708-727.
    Larkin, M.A., et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947-2948.
    Larsson, P., et al. (2008) Using multiple templates to improve quality of homology models in automated homology modeling. Protein Sci, 17, 990-1002.
    Lee, H.S., et al. (2002) Cyclomaltodextrinase, neopullulanase, and maltogenic amylase are nearly indistinguishable from each other. J Biol Chem, 277, 21891-21897.
    Liu, T., Tang, G.W. and Capriotti, E. (2011) Comparative Modeling: The State of the Art and Protein Drug Target Structure Prediction. Comb Chem High Throughput Screen.
    Liu, Y., et al. (2000) Crystal structure of the cysteine-rich domain of mannose receptor complexed with a sulfated carbohydrate ligand. J Exp Med, 191, 1105-1116.
    Liu, Y.N., et al. (2007) Solution structure of family 21 carbohydrate-binding module from Rhizopus oryzae glucoamylase. Biochem J, 403, 21-30.
    Lo, H.F., et al. (2004) Site-directed mutagenesis of the conserved threonine, tryptophan, and lysine residues in the starch-binding domain of Bacillus sp. strain TS-23 alpha-amylase. Curr Microbiol, 48, 280-284.
    Luo, Y., et al. (1999) The 1.8 A structures of leech intramolecular trans-sialidase complexes: evidence of its enzymatic mechanism. J Mol Biol, 285, 323-332.
    Macedo-Ribeiro, S., et al. (1999) Crystal structures of the membrane-binding C2 domain of human coagulation factor V. Nature, 402, 434-439.
    Maveyraud, L., et al. (2009) Structural basis for sugar recognition, including the Tn carcinoma antigen, by the lectin SNA-II from Sambucus nigra. Proteins, 75, 89-103.
    Mikkelsen, R., Suszkiewicz, K. and Blennow, A. (2006) A novel type carbohydrate-binding module identified in alpha-glucan, water dikinases is specific for regulated plastidial starch metabolism. Biochemistry, 45, 4674-4682.
    Mitsuoka, K. (2011) Obtaining high-resolution images of biological macromolecules by using a cryo-electron microscope with a liquid-helium cooled stage. Micron, 42, 100-106.
    Montanier, C., et al. (2009) Evidence that family 35 carbohydrate binding modules display conserved specificity but divergent function. Proc Natl Acad Sci U S A, 106, 3065-3070.
    Nakamura, T., et al. (2008) Tertiary structure and carbohydrate recognition by the chitin-binding domain of a hyperthermophilic chitinase from Pyrococcus furiosus. J Mol Biol, 381, 670-680.
    Needleman, S.B. and Wunsch, C.D. (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol, 48, 443-453.
    Notenboom, V., et al. (2001) Recognition of cello-oligosaccharides by a family 17 carbohydrate-binding module: an X-ray crystallographic, thermodynamic and mutagenic study. J Mol Biol, 314, 797-806.
    Notenboom, V., et al. (2001) Crystal structures of the family 9 carbohydrate-binding module from Thermotoga maritima xylanase 10A in native and ligand-bound forms. Biochemistry, 40, 6248-6256.
    Notenboom, V., et al. (2002) High-resolution crystal structures of the lectin-like xylan binding domain from Streptomyces lividans xylanase 10A with bound substrates reveal a novel mode of xylan binding. Biochemistry, 41, 4246-4254.
    Notredame, C., Higgins, D.G. and Heringa, J. (2000) T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol, 302, 205-217.
    Oliveira, O.V., et al. (2009) Interaction between the CBM of Cel9A from Thermobifida fusca and cellulose fibers. J Mol Recognit, 22, 38-45.
    Olson, R. and Gouaux, E. (2005) Crystal structure of the Vibrio cholerae cytolysin (VCC) pro-toxin and its assembly into a heptameric transmembrane pore. J Mol Biol, 350, 997-1016.
    Paldi, T., Levy, I. and Shoseyov, O. (2003) Glucoamylase starch-binding domain of Aspergillus niger B1: molecular cloning and functional characterization. Biochem J, 372, 905-910.
    Parker, M.W. (2003) Protein structure from X-ray diffraction. J Biol Phys, 29, 341-362.
    Pascal, J.M., et al. (2001) 2.8-A crystal structure of a nontoxic type-II ribosome-inactivating protein, ebulin l. Proteins, 43, 319-326.
    Pell, G., et al. (2003) Importance of hydrophobic and polar residues in ligand binding in the family 15 carbohydrate-binding module from Cellvibrio japonicus Xyn10C. Biochemistry, 42, 9316-9323.
    Pires, V.M., et al. (2004) The crystal structure of the family 6 carbohydrate binding module from Cellvibrio mixtus endoglucanase 5a in complex with oligosaccharides reveals two distinct binding sites with different ligand specificities. J Biol Chem, 279, 21560-21568.
    Pratt, K.P., et al. (1999) Structure of the C2 domain of human factor VIII at 1.5 A resolution. Nature, 402, 439-442.
    Ramelot, T.A., et al. (2009) Improving NMR protein structure quality by Rosetta refinement: a molecular replacement study. Proteins, 75, 147-167.
    Rutenber, E., et al. (1991) Crystallographic refinement of ricin to 2.5 A. Proteins, 10, 240-250.
    Shani, N., et al. (2011) Oxidized cellulose binding to allergens with a carbohydrate-binding module attenuates allergic reactions. J Immunol, 186, 1240-1247.
    Shao, C., et al. (2008) Crystal structure of lactadherin C2 domain at 1.7A resolution with mutational and computational analyses of its membrane-binding motif. J Biol Chem, 283, 7230-7241.
    Shimon, L.J., et al. (2000) Structure of a family IIIa scaffoldin CBD from the cellulosome of Clostridium cellulolyticum at 2.2 A resolution. Acta Crystallogr D Biol Crystallogr, 56, 1560-1568.
    Shin, J. and Lee, W. (2008) Structural proteomics by NMR spectroscopy. Expert Rev Proteomics, 5, 589-601.
    Sorimachi, K., et al. (1997) Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to beta-cyclodextrin. Structure, 5, 647-661.
    Subramanian, A.R., Kaufmann, M. and Morgenstern, B. (2008) DIALIGN-TX: greedy and progressive approaches for segment-based multiple sequence alignment. Algorithms Mol Biol, 3, 6.
    Suzuki, R., et al. (2009) Sugar-complex structures of the C-half domain of the galactose-binding lectin EW29 from the earthworm Lumbricus terrestris. Acta Crystallogr D Biol Crystallogr, 65, 49-57.
    Tahirov, T.H., et al. (1995) Crystal structure of abrin-a at 2.14 A. J Mol Biol, 250, 354-367.
    Tomme, P., Warren, R.A. and Gilkes, N.R. (1995) Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol, 37, 1-81.
    Tormo, J., et al. (1996) Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO J, 15, 5739-5751.
    Treiber, N., et al. (2008) Structure and mode of action of a mosquitocidal holotoxin. J Mol Biol, 381, 150-159.
    Tung, J.Y., et al. (2008) Crystal structures of the starch-binding domain from Rhizopus oryzae glucoamylase reveal a polysaccharide-binding path. Biochem J, 416, 27-36.
    Uchida, T., et al. (2004) Crystal structure of the hemolytic lectin CEL-III isolated from the marine invertebrate Cucumaria echinata: implications of domain structure for its membrane pore-formation mechanism. J Biol Chem, 279, 37133-37141.
    Uitdehaag, J.C., et al. (1999) The cyclization mechanism of cyclodextrin glycosyltransferase (CGTase) as revealed by a gamma-cyclodextrin-CGTase complex at 1.8-A resolution. J Biol Chem, 274, 34868-34876.
    Vaaje-Kolstad, G., et al. (2005) Crystal structure and binding properties of the Serratia marcescens chitin-binding protein CBP21. J Biol Chem, 280, 11313-11319.
    van Bueren, A.L., et al. (2005) Family 6 carbohydrate binding modules recognize the non-reducing end of beta-1,3-linked glucans by presenting a unique ligand binding surface. J Biol Chem, 280, 530-537.
    Vander Kooi, C.W., et al. (2007) Structural basis for ligand and heparin binding to neuropilin B domains. Proc Natl Acad Sci U S A, 104, 6152-6157.
    Vandermarliere, E., et al. (2009) Structural analysis of a glycoside hydrolase family 43 arabinoxylan arabinofuranohydrolase in complex with xylotetraose reveals a different binding mechanism compared with other members of the same family. Biochem J, 418, 39-47.
    Watson, J.N., et al. (2004) Contribution of the active site aspartic acid to catalysis in the bacterial neuraminidase from Micromonospora viridifaciens. FEBS Lett, 577, 265-269.
    Wayllace, N.Z., et al. (2010) The starch-binding capacity of the noncatalytic SBD2 region and the interaction between the N- and C-terminal domains are involved in the modulation of the activity of starch synthase III from Arabidopsis thaliana. Febs J, 277, 428-440.
    Wiederstein, M. and Sippl, M.J. (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res, 35, W407-410.
    Xu, G.Y., et al. (1995) Solution structure of a cellulose-binding domain from Cellulomonas fimi by nuclear magnetic resonance spectroscopy. Biochemistry, 34, 6993-7009.
    Yang, A.S. and Honig, B. (2000) An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments. J Mol Biol, 301, 691-711.
    Zhang, Y. and Skolnick, J. (2005) TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res, 33, 2302-2309.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE