簡易檢索 / 詳目顯示

研究生: 劉向瑄
Liu, Hsiang-Hsuan
論文名稱: 能源相關排程問題中的挑戰與演算法
Combinatorial Challenges and Algorithms in New Energy Aware Scheduling Problems
指導教授: 韓永楷
Hon, Wing-Kai
口試委員: 謝孫源
Hsieh, Sun-Yuan
李哲榮
Lee, Che-Rung
廖崇碩
Liao, Chung-Shou
彭勝龍
Peng, Sheng-Lung
蔡明哲
Tsai, Ming-Jer
楊得年
Yang, De-Nian
學位類別: 博士
Doctor
系所名稱:
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 128
中文關鍵詞: 排程即時演算法需求響應管理智慧電網電力成本精確演算法
外文關鍵詞: scheduling, online algorithm, demand response management, smart grid, electricity cost, exact algorithm
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們呈現現代智慧電網“需求響應管理”(demand response management) 中出現的節能排程問題的理論研究。消費者發送電力需求與這些需求可被執行的時間區 間。智慧電網控制中心在接收到電力需求後,會在指定的時間區間內調度這些需求。每 個時間點的電費是由當時的電力負載的凸函數來測量的。在這個最佳化問題中,我們的 目標是以最小的總電力成本安排所有需求。

    我們研究了不同模型中的智慧電網排程問題。在 offline model 中,我們證明這個智 慧電網排程問題在一般情況下是 NP-hard。對於特殊的需求,例如當所有需求的功率 和持續時間都是一單位,我們提出了一種多項式時間演算法。利用這個多項式時間演算 法,我們更提出了一種近似演算法可以解決任意的需求。另一方面,我們還提出了一個 精確的演算法來找出任意需求的最佳解。

    對於 online model,我們提出了一種可以用在任意需求的即時演算法。我們還證明 了智慧電網排程問題的競爭比(competitive ratio)的下限。對於特殊情況,我們設計 許多不同,競爭比更好的即時演算法。

    最後,我們轉向其他最佳化問題,並展示如何通過調整我們的演算法來解決它 們。我們證明我們的即時演算法能夠以趨近最優競爭比解決機器最小化問題(machine minimization problem)。另外我們還證明,我們的精確演算法可以用於解決其他需求 響應管理問題。


    In this thesis, we study the theoretical approach on energy-efficient scheduling problems arising in demand response management in the modern electrical smart grid. Consumers send in power requests with flexible feasible timeslots during which their requests can be served. The grid controller, upon receiving power requests, schedules each request within the specified interval. The electricity cost is measured by a convex function of the load in each timeslot. The objective is to schedule all requests with the minimum total electricity cost.

    We study the smart grid scheduling problem in different models. For the offline model, we prove the problem is NP-hard for the general case. We propose a polynomial time algorithm for special input where jobs have unit power request and unit time duration. By adapting the polynomial time algorithm for unit-size jobs, we propose an approximation algorithm for more general input. On the other hand, we also present an exact algorithm to find the optimal schedule for the problem with general input.

    For the online model, we propose an online algorithm for jobs with jobs with arbitrary power request, arbitrary time duration, and arbitrary contiguous feasible intervals. We also show a lower bound of the competitive ratio for the smart grid scheduling problem with unit height and arbitrary width. For special cases, we design different online algorithms with better competitive ratios.

    Finally, we look at other optimization problems and show how to solve them by adapting our techniques. We prove that our online algorithm can solve the machine minimization problem with an asymptotically optimal competitive ratio. We also show that our exact algorithm can be adapted to solve other demand response management problems.

    Notations ix Preface xi Abstract xiii Acknowledgements xvi 1 Introduction 1 1.1 Smart Grid Scheduling and Demand Respond Management . . . . . . . . 1 1.2 Our contribution ................................ 3 1.3 Organization of the Thesis........................... 6 2 Preliminaries and Definitions 9 2.1 Offline algorithms and class NP........................ 9 2.1.1 Approximation algorithms....................... 10 2.1.2 Fixed-parameter algorithms...................... 10 2.2 Online algorithms................................ 11 2.3 Scheduling.................................... 12 2.4 Smart Grid Scheduling Problem and Definitions. . . . . . . . . . . . . . . 13 3 Literature Review 15 3.1 Previous Workon Smart Grid Scheduling .................. 16 3.1.1 Minimizing peak power demand ................... 16 3.1.2 Minimizing total cost over time.................... 17 3.2 Dynamic Voltage/Speed Scaling Problem .................. 19 3.2.1 Algorithms for the DVS Problem ................... 20 3.2.2 Discrete dynamic voltage/speed scheduling . . . . . . . . . . . . . 22 3.2.3 Non-preemptive dynamic voltage/speed scheduling . . . . . . . . . 23 3.3 Related Scheduling Problems ......................... 25 3.3.1 Machine minimization ......................... 25 3.3.2 BinPackingproblem.......................... 27 3.3.3 Load Balancing problem........................ 28 3.4 Related Graph Algorithms........................... 30 3.4.1 Flow problem.............................. 30 3.4.2 Matching problem ........................... 30 3.4.3 Interval graphs ............................. 31 3.5 Summary .................................... 33 4 Offline Algorithms for The GRID Problem 35 4.1 NP-hardness .................................. 35 4.2 UnitCase.................................... 37 4.2.1 Feasibility graph Algorithm...................... 38 4.2.2 Correctness ............................... 40 4.2.3 TimeComplexity............................ 51 Noncontiguous Feasible Timeslots .................. 51 Contiguous Intervals.......................... 52 4.2.4 Using a Discrete DVS Algorithm ................... 55 4.3 Exact Algorithms for Jobs with Arbitrary Widths and Heights . . . . . . 59 4.3.1 Key notions............................... 59 4.3.2 Framework of the algorithms ..................... 61 4.3.3 An algorithm with three parameters ................. 67 4.3.4 An algorithm with two parameters.................. 69 4.4 An (36(1 + ⌈log wmax / wmin ⌉)(1 + ⌈log hmax / hmin ⌉))α-Approximation Algorithm for General Case.................................. 71 4.4.1 Uniform Widths and Uniform Heights Jobs . . . . . . . . . . . . . 72 4.4.2 General Input.............................. 79 4.5 Summary .................................... 85 5 Online Algorithms for The GRID Problem 87 5.1 General Case .................................. 90 5.1.1 Unit width and arbitrary height ................... 90 5.1.2 Uniform width and arbitrary height ................. 92 5.1.3 Arbitrary Input............................. 94 5.2 Lower Bound .................................. 99 5.3 Special Cases ..................................101 5.3.1 Unit-width and uniform-height ....................102 5.3.2 Uniform-height, arbitrary widths and agreeable deadlines . . . . . 103 5.3.3 Uniform height job set with common feasible intervals . . . . . . . 106 5.3.4 Unit width job set with common feasible intervals . . . . . . . . . 107 5.4 Summary ....................................109 6 Extensions to Other Problems 111 6.1 Online algorithm: Minimizing the peak power request . . . . . . . . . . . 111 6.2 The interval graph approach on other problems . . . . . . . . . . . . . . .116 6.2.1 Minimizing the peak power request. . . . . . . . . . . . . . . . . .117 6.2.2 Minimizing the total cost with limited power . . . . . . . . . . . .117 6.3 Summary ....................................118 7 Conclusion 119 Bibliography 121

    [1] Soroush Alamdari, Therese Biedl, Timothy M Chan, Elyot Grant, Krishnam Raju Jampani, Srinivasan Keshav, Anna Lubiw, and Vinayak Pathak, Smart-grid electricity allocation via strip packing with slicing, WADS, Springer, 2013, pp. 25–36.
    [2] Susanne Albers, Energy-efficient algorithms, Communication ACM 53 (2010), no. 5, 86–96.
    [3] Antonios Antoniadis and Chien-Chung Huang, Non-preemptive speed scaling, J. Scheduling 16 (2013), no. 4, 385–394.
    [4] Yossi Azar, On-line load balancing, Online Algorithms, Springer, 1998, pp. 178–195.
    [5] Evripidis Bampis, Alexander V. Kononov, Dimitrios Letsios, Giorgio Lucarelli, and Ioannis Nemparis, From preemptive to non-preemptive speed-scaling scheduling, Discrete Applied Mathematics 181 (2015), 11–20.
    [6] Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs, Speed scaling to manage energy and temperature, J. ACM 54 (2007), no. 1, 3:1–3:39.
    [7] Paul C. Bell and Prudence W. H. Wong, Multiprocessor speed scaling for jobs with arbitrary sizes and deadlines, J. Comb. Optim. 29 (2015), no. 4, 739–749.
    [8] Allan Borodin and Ran El-Yaniv, Online computation and competitive analysis, Cambridge University Press, New York, NY, USA, 1998.
    [9] Mihai Burcea, Wing-Kai Hon, Hsiang-Hsuan Liu, Prudence W. H. Wong, and David K. Y. Yau, Scheduling for electricity cost in smart grid, Combinatorial Optimization and Applications - 7th International Conference, COCOA 2013, Chengdu, China, December 12-14, 2013, Proceedings (Peter Widmayer, Yinfeng Xu, and Binhai Zhu, eds.), Lecture Notes in Computer Science, vol. 8287, Springer, 2013, pp. 306–317.
    [10] Mihai Burcea, Wing-Kai Hon, Hsiang-Hsuan Liu, Prudence W. H. Wong, and David K. Y. Yau, Scheduling for electricity cost in a smart grid, J. Scheduling 19 (2016), no. 6, 687–699.
    [11] St ́ephane Caron and George Kesidis, Incentive-based energy consumption scheduling algorithms for the smart grid, IEEE Smart Grid Comm., 2010, pp. 391–396.
    [12] Chen Chen, K. G. Nagananda, Gang Xiong, Shalinee Kishore, and Lawrence V. Snyder, A communication-based appliance scheduling scheme for consumer-premise energy management systems, IEEE Trans. Smart Grid 4 (2013), no. 1, 56–65.
    [13] Lin Chen, Nicole Megow, and Kevin Schewior, An o(log m)-competitive algorithm for online machine minimization, Proceedings of the Twenty-Seventh Annual ACM- SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016 (Robert Krauthgamer, ed.), SIAM, 2016, pp. 155–163.
    [14] Julia Chuzhoy and Paolo Codenotti, Erratum: Resource minimization job scheduling, APPROX-RANDOM, 2009.
    [15] Julia Chuzhoy, Sudipto Guha, Sanjeev Khanna, and Joseph Naor, Machine minimization for scheduling jobs with interval constraints, 45th Symposium on Foundations of Computer Science (FOCS 2004), 17-19 October 2004, Rome, Italy, Proceedings, IEEE Computer Society, 2004, pp. 81–90.
    [16] Julia Chuzhoy, Sudipto Guha, Sanjeev Khanna, and Joseph Seffi Naor, Machine minimization for scheduling jobs with interval constraints, FOCS, IEEE, 2004, pp. 81–90.
    [17] Mark Cieliebak, Thomas Erlebach, Fabian Hennecke, Birgitta Weber, and Peter Widmayer, Scheduling with release times and deadlines on a minimum number of machines, IFIP TCS, Springer, 2004, pp. 209–222.
    [18] Mark Cieliebak, Thomas Erlebach, Fabian Hennecke, Birgitta Weber, and Peter Widmayer, Scheduling with release times and deadlines on a minimum num- ber of machines, Exploring New Frontiers of Theoretical Informatics, IFIP 18th World Computer Congress, TC1 3rd International Conference on Theoretical Com- puter Science (TCS2004), 22-27 August 2004, Toulouse, France (Jean-Jacques L ́evy, Ernst W. Mayr, and John C. Mitchell, eds.), IFIP, vol. 155, Kluwer/Springer, 2004, pp. 209–222.
    [19] Nikhil R. Devanur, Konstantin Makarychev, Debmalya Panigrahi, and Grigory Yaroslavtsev, Online algorithms for machine minimization, CoRR abs/1403.0486 (2014).
    [20] Irit Dinur, Klaus Jansen, Joseph Naor, and Jos ́e D. P. Rolim (eds.), Approximation, randomization, and combinatorial optimization. algorithms and techniques, 12th international workshop, APPROX 2009, and 13th international workshop, RANDOM 2009, berkeley, ca, usa, august 21-23, 2009. proceedings, Lecture Notes in Computer Science, vol. 5687, Springer, 2009.
    [21] Marijana Zˇivi ́c Djurovi ́c, Aleksandar Milaˇci ́c, and Marko Krˇsulja, A simplified model of quadratic cost function for thermal generators, DAAAM, 2012, pp. 25–28.
    [22] Jack Edmonds and Richard M. Karp, Theoretical improvements in algorithmic efficiency for network flow problems, J. ACM 19 (1972), no. 2, 248–264.
    [23] European Commission, Europen smartgrids technology platform, ftp://ftp.
    cordis.europa.eu/pub/fp7/energy/docs/smartgrids_en.pdf, 2006.
    [24] Kan Fang, Nelson A. Uhan, Fu Zhao, and John W. Sutherland, Scheduling on a single machine under time-of-use electricity tariffs, Annals OR 238 (2016), no. 1-2, 199–227.
    [25] Xi Fang, Satyajayant Misra, Guoliang Xue, and Dejun Yang, Smart grid – the new and improved power grid: A survey, IEEE Communications Surveys Tutorials 14 (2012), no. 4, 944–980.
    [26] Hassan Farhangi, The path of the smart grid, IEEE Power and Energy Mag. 8 (2010), no. 1, 18–28.
    [27] Xin Feng, Yinfeng Xu, and Feifeng Zheng, Online scheduling for electricity cost in smart grid, COCOA, Springer, 2015, pp. 783–793.
    [28] Delbert Fulkerson and Oliver Gross, Incidence matrices and interval graphs, Pacific Journal of Mathematics 15 (1965), no. 3, 835–855.
    [29] M. R. Garey, Ronald L. Graham, David S. Johnson, and Andrew Chi-Chih Yao, Resource constrained scheduling as generalized bin packing, J. Comb. Theory, Ser. A 21 (1976), no. 3, 257–298.
    [30] Michael R. Garey and David S. Johnson, Computers and intractability; a guide to the theory of np-completeness, W. H. Freeman & Co., New York, NY, USA, 1990.
    [31] R. L. Graham, Bounds for certain multiprocessing anomalies, Bell System Technical Journal 45 (1966), 1563–1581.
    [32] Rudolf Halin, Some remarks on interval graphs, Combinatorica 2 (1982), no. 3, 297–304.
    [33] K. Hamilton and N. Gulhar, Taking demand response to the next level, IEEE Power and Energy Mag. 8 (2010), no. 3, 60–65.
    [34] Dorit S. Hochbaum and J. George Shanthikumar, Convex separable optimization is not much harder than linear optimization, J. ACM 37 (1990), no. 4, 843–862.
    [35] Wing-Kai Hon, Hsiang-Hsuan Liu, and Prudence W.H. Wong, Online nonpreemptive scheduling for electricity cost in smart grid, MAPSP, 2015, pp. 193–195.
    [36] WA Horn, Some simple scheduling algorithms, Naval Research Logistics Quarterly 21 (1974), no. 1, 177–185.
    [37] Chien-Chung Huang and Sebastian Ott, New results for non-preemptive speed scaling, Mathematical Foundations of Computer Science 2014 - 39th International Symposium, MFCS 2014, Budapest, Hungary, August 25-29, 2014. Proceedings, Part II (Erzs ́ebet Csuhaj-Varju ́, Martin Dietzfelbinger, and Zolt ́an E ́sik, eds.), Lecture Notes in Computer Science, vol. 8635, Springer, 2014, pp. 360–371.
    [38] Ali Ipakchi and Farrokh Albuyeh, Grid of the future, IEEE Power & Energy Mag. 7 (2009), no. 2, 52–62.
    [39] Tohru Ishihara and Hiroto Yasuura, Voltage scheduling problem for dynamically variable voltage processors, Proceedings of the 1998 International Symposium on Low Power Electronics and Design, 1998, Monterey, California, USA, August 10- 12, 1998 (Anantha Chandrakasan and Sayfe Kiaei, eds.), ACM, 1998, pp. 197–202.
    [40] Landis D. Kannberg, David P. Chassin, JohN G. DeSteese, Steve G. Hauser, Michael C. Kintner-Meyer, Robert G. Pratt, Lawrence A. Schienbein, and W. Michael Warwick, GridWiseTM: The benefits of a transformed energy system, arXiv preprint nlin/0409035 (2004).
    [41] Mohammad M Karbasioun, Gennady Shaikhet, Evangelos Kranakis, and Ioannis Lambadaris, Power strip packing of malleable demands in smart grid, ICC, IEEE, 2013, pp. 4261–4265.
    [42] Alexander V. Karzanov and S. Thomas McCormick, Polynomial methods for separable convex optimization in unimodular linear spaces with applications, SIAM J. Comput. 26 (1997), no. 4, 1245–1275.
    [43] Ton Kloks and et al., Advances in graph algorithms, 2013.
    [44] Iordanis Koutsopoulos and Leandros Tassiulas, Control and optimization meet the smart power grid: Scheduling of power demands for optimal energy management, e-Energy, ACM, 2011, pp. 41–50.
    [45] Iordanis Koutsopoulos and Leandros Tassiulas, Control and optimization meet the smart power grid: scheduling of power demands for optimal energy management, 2nd International Conference on Energy- Efficient Computing and Networking 2011, e-Energy ’11, New York, NY, USA - May 31 - June 01, 2011 (Hermann de Meer and David Hutchison, eds.), ACM, 2011, pp. 41–50.
    [46] Rajamani Krishnan, Meters of tomorrow [in my view], IEEE Power and Energy Magazine 6 (2008), no. 2, 96–94.
    [47] Woo-Cheol Kwon and Taewhan Kim, Optimal voltage allocation techniques for dynamically variable voltage processors, ACM Trans. Embedded Comput. Syst. 4 (2005), no. 1, 211–230.
    [48] Joseph Leung, Laurie Kelly, and James H. Anderson, Handbook of scheduling: Algorithms, models, and performance analysis, CRC Press, Inc., Boca Raton, FL, USA, 2004.
    [49] Husheng Li and Robert Caiming Qiu, Need-based communication for smart grid: When to inquire power price?, Proceedings of the Global Communications Conference, 2010. GLOBECOM 2010, 6-10 December 2010, Miami, Florida, USA, IEEE, 2010, pp. 1–5.
    [50] Minming Li, Approximation algorithms for variable voltage processors: Min energy, max throughput and online heuristics, Theor. Comput. Sci. 412 (2011), no. 32, 4074–4080.
    [51] Minming Li and F. Frances Yao, An efficient algorithm for computing optimal discrete voltage schedules, SIAM J. Comput. 35 (2005), no. 3, 658–671.
    [52] Minming Li, Frances F. Yao, and Hao Yuan, An $o(nˆ2)$ algorithm for computing optimal continuous voltage schedules, CoRR abs/1408.5995 (2014).
    [53] Zhuo Li and Qilian Liang, Performance analysis of multiuser selection scheme in dynamic home area networks for smart grid communications, IEEE Trans. Smart Grid 4 (2013), no. 1, 13–20.
    [54] Fu-Hong Liu, Hsiang-Hsuan Liu, and Prudence W. H. Wong, Optimal nonpreemptive scheduling in a smart grid model, 27th International Symposium on Algorithms and Computation, ISAAC 2016, December 12-14, 2016, Sydney, Australia (Seok- Hee Hong, ed.), LIPIcs, vol. 64, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016, pp. 53:1–53:13.
    [55] Fu-Hong Liu, Hsiang-Hsuan Liu, and Prudence W. H. Wong, Optimal nonpreemptive scheduling in a smart grid model, CoRR abs/1602.06659 (2016).
    [56] Alvaro Llaria, Jaime Jim ́enez, and Octavian Curea, Study on communication technologies for the optimal operation of smart grids, Trans. Emerging Telecommunications Technologies 25 (2014), no. 10, 1009–1019.
    [57] Lockheed Martin, SEELoadTM Solution, http://www.lockheedmartin.co.uk/us/ products/energy-solutions/seesuite/seeload.html.
    [58] Thillainathan Logenthiran, Dipti Srinivasan, and Tan Zong Shun, Demand side management in smart grid using heuristic optimization, IEEE Trans. Smart Grid 3 (2012), no. 3, 1244–1252.
    [59] T. Joseph. Lui., Warwick Stirling, and Henry O. Marcy, Get smart, IEEE Power & Energy Mag. 8 (2010), no. 3, 66–78.
    [60] Chris Y. T. Ma, David K. Y. Yau, and Nageswara S. V. Rao, Scalable solutions of markov games for smart-grid infrastructure protection, IEEE Trans. Smart Grid 4 (2013), no. 1, 47–55.
    [61] Sabita Maharjan, Quanyan Zhu, Yan Zhang, Stein Gjessing, and Tamer Basar,
    Dependable demand response management in the smart grid: A stackelberg game approach, IEEE Trans. Smart Grid 4 (2013), no. 1, 120–132.
    [62] Gilbert M Masters, Renewable and efficient electric power systems, John Wiley & Sons, 2013.
    [63] Amir-Hamed Mohsenian-Rad, Vincent W.S. Wong, Juri Jatskevich, and Robert Schober, Optimal and autonomous incentive-based energy consumption scheduling algorithm for smart grid, ISGT, IEEE, 2010, pp. 1–6.
    [64] Amir-Hamed Mohsenian-Rad, Vincent WS Wong, Juri Jatskevich, Robert Schober, and Alberto Leon-Garcia, Autonomous demand-side management based on game- theoretic energy consumption scheduling for the future smart grid, IEEE Trans. Smart Grid 1 (2010), no. 3, 320–331.
    [65] Balakrishnan Narayanaswamy, Vikas K. Garg, and T. S. Jayram, Online optimization for the smart (micro) grid, Proceedings of the 3rd International Conference on Energy-Efficient Computing and Networking, e-Energy’12, Madrid, Spain, May 9-11, 2012 (Marco Ajmone Marsan, Suresh Goyal, Shugong Xu, Antonio Fern ́andez, Milan Prodanovic, and Ken Christensen, eds.), ACM, 2012, p. 19.
    [66] Rolf Niedermeier, Invitation to fixed-parameter algorithms, Oxford University Press, Oxford, 2006.
    [67] Cynthia A. Phillips, Clifford Stein, Eric Torng, and Joel Wein, Optimal time-critical scheduling via resource augmentation, Algorithmica 32 (2002), no. 2, 163–200.
    [68] Anshu Ranjan, Pramod P. Khargonekar, and Sartaj Sahni, Offline preemptive scheduling of power demands to minimize peak power in smart grids, IEEE Symposium on Computers and Communications, ISCC 2014, Funchal, Madeira, Portugal, June 23-26, 2014, IEEE Computer Society, 2014, pp. 1–6.
    [69] Anshu Ranjan, Pramod P. Khargonekar, and Sartaj Sahni, Offline first fit scheduling in smart grids, 2015 IEEE Symposium on Com- puters and Communication, ISCC 2015, Larnaca, Cyprus, July 6-9, 2015, IEEE Computer Society, 2015, pp. 758–763.
    [70] REGEN Energy Inc, ENVIROGRIDTM SMART GRID BUNDLE, http://www. regenenergy.com/press/announcing-the-envirogrid-smart-grid-bundle/.
    [71] Barna Saha, Renting a cloud, FSTTCS, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2013, pp. 437–448.
    [72] Sergio Salinas, Ming Li, and Pan Li, Multi-objective optimal energy consumption
    scheduling in smart grids, IEEE Trans. Smart Grid 4 (2013), no. 1, 341–348.
    [73] Pedram Samadi, Amir-Hamed Mohsenian-Rad, Robert Schober, Vincent WS Wong, and Juri Jatskevich, Optimal real-time pricing algorithm based on utility maximization for smart grid, SmartGridComm, IEEE, 2010, pp. 415–420.
    [74] P. T. Sokkalingam, Ravindra K. Ahuja, and James B. Orlin, New polynomial-time cycle-canceling algorithms for minimum-cost flows, Networks 36 (2000), no. 1, 53– 63.
    [75] Arie Tamir, A strongly polynomial algorithm for minimum convex separable quadratic cost flow problems on two-terminal series-parallel networks, Math. Pro- gram. 59 (1993), 117–132.
    [76] ShaoJie Tang, Qiuyuan Huang, Xiang-Yang Li, and Dapeng Wu, Smoothing the energy consumption: Peak demand reduction in smart grid, INFOCOM, IEEE, 2013, pp. 1133–1141.
    [77] Toronto Hydro Corporation, Peaksaver Program, http://www.peaksaver.com/ peaksaver_THESL.html.
    [78] UK Department of Energy & Climate Change, Smart grid: A more energy-efficient electricity supply for the UK, https://www.gov.uk/ smart-grid-a-more-energy-efficient-electricity-supply-for-the-uk, 2013.
    [79] US Department of Energy, The Smart Grid: An Introduction, http://www.oe. energy.gov/SmartGridIntroduction.htm, 2009.
    [80] L ́aszl ́o A. V ́egh, Strongly polynomial algorithm for a class of minimum-cost flow problems with separable convex objectives, Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012 (Howard J. Karloff and Toniann Pitassi, eds.), ACM, 2012, pp. 27–40.
    [81] F. Frances Yao, Alan J. Demers, and Scott Shenker, A scheduling model for reduced CPU energy, 36th Annual Symposium on Foundations of Computer Science, Milwaukee, Wisconsin, 23-25 October 1995, IEEE Computer Society, 1995, pp. 374– 382.
    [82] Sean Yaw and Brendan Mumey, An exact algorithm for non-preemptive peak demand job scheduling, Combinatorial Optimization and Applications - 8th International Conference, COCOA 2014, Wailea, Maui, HI, USA, December 19-21, 2014, Proceedings (Zhao Zhang, Lidong Wu, Wen Xu, and Ding-Zhu Du, eds.), Lecture Notes in Computer Science, vol. 8881, Springer, 2014, pp. 3–12.
    [83] Sean Yaw, Brendan Mumey, Erin McDonald, and Jennifer Lemke, Peak demand scheduling in the smart grid, 2014 IEEE International Conference on Smart Grid Communications, SmartGridComm 2014, Venice, Italy, November 3-6, 2014, IEEE, 2014, pp. 770–775.
    [84] Zpryme Research & Consulting, Power systems of the future: The case for energy storage, distributed generation, and microgrids, http://smartgrid.ieee. org/images/features/smart_grid_survey.pdf, 2012.

    QR CODE