簡易檢索 / 詳目顯示

研究生: 簡□傑
Chien, Heng-Chieh
論文名稱: 微奈米尺度薄膜之熱傳導量測方法研究開發
Novel Methods Development for Measuring Thermal Conductivity of Micro/Nanoscale Thin-Film
指導教授: 饒達仁
Yao, Da-Jeng
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 140
中文關鍵詞: 薄膜熱傳導係數界面熱阻量測微機電熱電材料
外文關鍵詞: thin-film, thermal conductivity, interfacial thermal resistance, measurement, MEMS, thermoelectric material
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究利用一組推導出來的熱源-薄膜-基板系統之數學解析解(analytical solution),利用這組解析解,本研究開發出三種可應用於不同膜厚範圍之薄/厚膜熱傳導性能(thermal conductivity)量測方法。並且利用這些量測方法,量測估算出金屬-介電層之界面熱阻(metal-dielectric interfacial thermal resistance)。在創新量測方法研究開發方面,首先在50 nm~2 μm膜厚範圍內,本論文研究發展出一種我們稱為平行線法(parallel-strip method)的創新量測方法,同時我們量測了三種不同製程所沉積的SiO2薄膜,同時與先前之文獻值比較,結果相當吻合。在2μm ~10μm膜厚範圍內,我們修正了平行線法的部份關係式,發展出另一個薄膜量測法,並且針對電化學沉積技術(electroposition process)所沉積之Bi-Te與Sb-Te熱電薄膜(thermoelectric thin-film)進行量測。同時也針對熱電薄膜結構易碎的限制,研究出一種測試樣品製備的方法,結果成功量測出三種不同製程參數所成長的熱電薄膜。在膜厚10 μm ~1000 μm厚膜方面,我們使用相同的數學解析解,推導出一種我們稱為膜厚差異法(thickness difference method)之創新方法。該方法針對SU8厚膜進行量測,同時與文獻值比較,結果非常吻合。而在金屬-介電層之界面熱阻量測方面,我們使用平行線法,針對一種三明治薄膜結構(sandwiched film structure)進行量測。結果量測出五種不同金屬,Cr、Ti、Al、Ni、Pt,與PECVD SiO2之界面熱阻值,並研究證實連續二流體理論模型(the continuum two-fluid model),無法完整解釋金屬-介電層界面熱阻之發生機制,同時該項研究也嘗試利用TEM觀察,與簡單的模擬估算,提出一種導因於界面不完美熱接觸之界面熱阻成因解釋。


    Many methods for the measurement of the thermal conductivity of thin films have been reported in the previous scientific literatures. Because each class of thin-film structure presents an almost unique set of experimental impediments to overcome, no particular measurement method has become universally accepted. Therefore, different strategies and many techniques are needed for developing a simple, convenient and reliable measurement method for each class thin-film.
    In this study, we had derived a set of mathematical analytical solution from a complete heater-film-substrate system model. Based on the analytical solutions, we had successfully developed three novel methods for three different thickness ranges of thin/thick film. In the range of film thickness between 50 nm to 2 μm, a novel method, called parallel-strip method, had been developed and three types of SiO2 been measured in that work. The measured results agree with that of the previous literatures. In the range between 2 μm to 10 μm, a modified parallel-strip method had been developed and four types of thermoelectric thin films fabricated by electrodeposition process had been measured, also an epoxy resin layer, substitute for SiO2 to serve as the dielectric layer, were introduced to the sample preparing process. For thick-film of 10 μm to 1000 μm in thickness, a novel method, called thickness difference method, had been built. The method is very simple because derived from a concise semi-empirical correlation. SU8 thick film had been tested by using the novel method and yielded a quite accurate result compared with the previous literatures.
    By using parallel-strip method and a sandwiched film structure, metal-dielectric interfacial thermal resistance had also been studied in this work. A metal layer of thickness about 10 nm, including Cr (chromium), Ti (titanium), Al (aluminum), Ni (nickel) and Pt (platinum), is sandwiched between two PECVD SiO2 layers of thickness 100 nm. The estimates, 10-10~10-9 m2 K/W, calculated with a continuum two-fluid model are significantly smaller than the measured values, ~10-8 m2 K/W. The continuum two-fluid model, which according to the phenomena of electron-phonon nonequilibrium near the interface in a metal, cannot explain completely the cause of this metal-dielectric interfacial thermal resistance. From photographs of the TEM cross section, we argue that defects at an interface likely play an important role in the magnitude of the interfacial thermal resistance.

    摘要 ii 誌謝 v 表目錄 ix 圖目錄 x 第一章 研究動機 1 第二章 薄膜之熱傳輸現象與量測方法 7 2.1 微觀熱傳輸現象 7 2.1.1 熱載子之能量傳輸 7 2.1.2 熱傳導率與尺度效應 10 2.1.3 界面熱阻 15 2.2 薄膜熱傳導性能量測方法 20 2.2.1 熱擴散法(Diffusivity Methods) 21 2.2.2 熱傳導法(Thermal Conductance Methods) 27 2.2.3 三倍頻法(3 omega Method) 32 第三章 創新量測方法(1) – 20 nm ~ 2 μm尺度薄膜 40 3.1 量測方法與原理 41 3.2 溫度求法 51 3.3 樣品製備與誤差估算 56 3.4 SiO2之熱傳導係數量測 59 第四章 創新量測方法(2) – 2 μm ~ 10 μm尺度薄膜 67 4.1 量測方法與原理 69 4.2 樣品製備與誤差估算 72 4.3 Bi-Te與Sb-Te熱電薄膜量測 78 第五章 創新量測方法(3) – 10 μm ~ 1000 μm尺度厚膜 91 5.1 量測方法與原理 92 5.2 樣品製備 100 5.3 SU8熱阻量測與誤差估算 102 第六章 金屬-介電層之界面熱阻量測 109 6.1 連續二流體法 (the continuum two-fluid model) 111 6.2 金屬-介電層界面熱阻量測 118 6.3 量測數據分析與討論 125 第七章 結論與展望 130 參考文獻 133

    1 R. Baierlein, Thermal Physics, Cambridge University Press, Cambridge, UK, 2001
    2 G. Chen, Nanoscale Energy Transport and Conversion, Oxford University Press, New York, USA, 2005
    3 D.M. Rowe, Thermoelectrics Handbook: Macro to Nano, CRC Press, Florida, USA, 2005
    4 簡恆傑, "薄膜熱傳導性能量測方法", 先進微系統與構裝技術, 25, pp.57-67, 2007
    5 D. G. Cahill, W. K. Ford, K. E. Goodson et al., "Nanoscale Thermal Transport", J. Appl. Phys., 93, pp.793-818, 2003
    6 J. E. Graebner, J. A. Mucha, L. Seibles et al., "The Thermal Conductivity of Chemical-Vapor-Deposited Diamond Films on Silicon", J. Appl. Phys., 71, pp.3143-3146, 1992
    7 Y. C. Tai, C. H. Mastrangelo, and R. S. Muller, "Thermal Conductivity of Heavily Doped Low-Pressure Chemical Vapor Deposited Polycrystalline Silicon Films", J. Appl. Phys., 63, pp.1442-1447, 1988
    8 E. P. Visser, E. H. Versteegen, and J. P. Enckevort, "Measurement of Thermal Diffusion in Thin Films Using a Modulated Laser Technique: Application to Chemical-Vapor-Deposited Diamond Films", J. Appl. Phys., 71, pp.3238-3248, 1992
    9 J. E. Graebner, S. Jin, G. W. Kammlott et al., "Anisotropic Thermal Conductivity in Chemical Vapor Deposition Diamond", J. Appl. Phys., 71, pp.5353-5356, 1992
    10 G. Chen, C. L. Tien, X. Wu et al., "Thermal Diffusivity Measurement of GaAs/AlGaAs Thin-Film Structures", J. Heat Transfer, 116, pp.325-331, 1994
    11 S. Govorkov, W. Ruerman, M. W. Horn et al., "A New Method for Measuring Thermal Conductivity of Thin Films", Rev. Sci. Instrum., 68, pp.3828-3834, 1997
    12 E. Jansen and E. Obermeier, "Thermal Conductivity Measurements on Thin Films Based on Micromechanical Devices", J. Micromech. Microeng., 6, pp.118-121, 1996
    13 O. W. K□ding, H. Shurk, and K. E. Goodson, "Thermal Conduction in Metallized Silicon-Dioxide Layers on Silicon", Appl, Phys. Lett., 65, pp.1629-1631, 1994
    14 G. Pompe and K. Schmidt, "Vapour-Deposited Lead Films and Their Transport Characteristics at Low Temperatures", Phys Stat Sol., A31, pp.37-46, 1975
    15 T.Yao, "Thermal Properties of AlAs/GaAs superlattices", Appl. Phys. Lett., 51, pp.1798-1800, 1987
    16 D. G. Cahill, "Thermal Conductivity Measurements from 30K-750K: The 3 Omega Method", Rev. Sci. Instrum., 61, pp.802-808, 1990
    17 D. G. Cahill, "Heat Transport in Dielectric Thin Films and at Solid-Solid Interfaces", Microscale Thermophys. Eng., 1, pp.85-109, 1997
    18 J. H. Kim, A. Feldman, and D. Novotny, "Application of the Three Omega Thermal Conductivity Measurement Method to a Film on a Substrate of Finite Thickness", J. Appl. Phys., 86, pp.3959-3963, 1999
    19 C. E. Raudzis and F. Schatz, "Extending the 3ω Method for Thin-Film Analysis to High Frequencies", J. Appl. Phys., 93, pp.6050-6055, 2003
    20 T. Yamane, N. Nagai, S. Katayama et al., "Measurement of Thermal Conductivity of Silicon Dioxide Thin Films Using a 3ω Method", J. Appl. Phys., 91, pp.9772-9776, 2002
    21 N. W. Ashcroft and N. D. Mermin, Solid State Physics, Brooks/Cole, Toronto, 1976
    22 M. P. Marder, Condensed Matter Physics, WILEY-interscience, New York, 2000
    23 李雅明, 固態電子學, 全華科技圖書股份有限公司, 台北市, 2002
    24 閻守勝, 固態物理概論: fundamental of solid state physics, 五南圖書出版股份有限公司, 臺北市, 2006
    25 B. S. Chandrasekhar, 凝態 Everywhere (Why Things Are the Way They Are), 天下文化, 台北, 2000
    26 C. Kittel, Introduction to Solid State Physics, John Wiley & Sons. Inc, 1996
    27 W.M. Rohsenow and H.Y. Choi, Heat Mass and Momentum Transfer, Prentice Hall, Englewood Cliffs, NJ, 1961
    28 M. I. Flik, B. I. Choi, and K. E. Goodson, "Heat Transfer Regimes in Microstructures", J. Heat Transfer, 114, pp.666-674, 1992
    29 C. J. Glassbrenner and G. A. Slack, "Thermal Conductivity of Silicon and Germanium from 3°K to the Melting Point ", Phys. Rev., 134, pp.A1058-A1069, 1964
    30 C. L. Tien and G. Chen, "Challenges in Microscale Conductive and Radiative Heat Transfer", J. Heat Transfer, 116, pp.799-807, 1994
    31 A. Majumdar, "Microscale Heat Conduction in Dielectric Thin Films", J. Heat Transfer, 115, pp.7-16, 1993
    32 J. M. Ziman, Electrons and Phonons, Oxford University Press, London, 1960
    33 S. M. Lee and D. G. Cahill, "Heat Transport in Thin Dielectric Films", J. Appl. Phys., 81, pp.2590-2595, 1997
    34 S. Kotake, "Molecular Engineering Problems in Heat and Mass Transfer", ASME Thermal Engineering Proceedings, 4, pp.33-40, 1991
    35 S. Wakuri and S. Kotake, "Molecular Dynamics Study of Heat Conduction in Very Thin Films", ASME/JSME Thermal Engineering Proceedings, 4, pp.111-116, 1991
    36 G. Chen and C. L. Tien, "Thermal Conductivity of Quantum Well. Structures", J. Thermophysics and Heat Transfer, 7, pp.311-318, 1993
    37 C. K. Liu, C. K. Yu, H. C. Chien et al., "Thermal Conductivity of Si/SiGe Superlattice Films", J. Appl. Phys., 104, pp.114301, 2008
    38 S. Y. Ren and J. D. Dow, "Thermal Conductivity of Superlattice", Phys. Rev. B, 25, pp.3750-3755, 1982
    39 Y. S. Ju, M. T. Hung, and T. Usui, "Nanoscale Heat Conduction across Metal-Dielectric Interfaces", J. Heat Transfer, 128, pp.919-925, 2006
    40 W. A. Little, "The Transport of Heat Between Dissimilar Solids at Low Temperature", Can, J. Phys., 37, pp.334-349, 1959
    41 R. J. Stevens, L. V. Zhigilei, and P. M. Norris, "Effects of Temperature and Disorder on Thermal Boundary Conductance at Solid-Solid Interfaces: Nonequilibrium Molecular Dynamics Simulations", Int. J. Heat and Mass Transfer, 50, pp.3977-3989, 2007
    42 E. T. Swartz and R. O. Pohl, "Thermal Resistance at Interfaces", Appl. Phys. Lett., 51, pp.2200-2202, 1987
    43 E. T. Swartz and R. O. Pohl, "Thermal Boundary Resistance", Rev.of Modern Phys., 61, pp.605-668, 1989
    44 C. D. Marshall, I. M. Fishman, R. C. Dorfman et al., "Thermal Diffusion, Interfacial Thermal Barrier, and Ultrasonic Propogation in YBa2Cu3O7 Thin Film: Surface-Selective Transient-Grating Experiment", Phy. Rev. B, 45, pp.10009-10021, 1992
    45 R. C. Chen, J. P. Wu, and H. S. Chu, "Borometric Response of High-Tc Superconducting Detectors to Optical Pluses and Continuous Waves ", J. Heat Transfer, 117, pp.528-534, 1995
    46 R. S. Prasher and P. E. Phelan, "A Scattering Mediated Acoustic Mismatch Model for the Prediction of Thermal Boundary Resistance", J. Heat Transfer, 123, pp.105-112, 2001
    47 M. Kelkar and P. E. Phelan, "Thermal Boundary Resistance for Thin Film High-Tc Superconductors at Varying Interfacial Temperature Drops", Int. J. Heat and Mass Transfer, 40, pp.2637-2645, 1997
    48 G. Chen, "Size and Interface Effect on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures", J. Heat Transfer, 119, pp.220-229, 1997
    49 簡恆傑, "微尺度薄膜熱傳導性能量測方法", 工業材料, 247, pp.95-105, 2007
    50 K. E. Goodson and M. I. Flik, "Solid Layer Thermal Conductivity Measurement Techniques", Appl. Mech. Rev., 47, pp.101-112, 1994
    51 G. Chen, D. Borca-Tasciuc, and R. G. Yang, Nanoscale Heat Transfer, American Scientific Publishers, 2004
    52 F. P. Incropera and D. P. DeWitt, Fundamental of Heat and Mass Transfer, John Wiley & Sons, New York, 1996
    53 A. C. Tam, "Applications of Photoacoustic Sensing Techniques", Rev. Mod. Phys., 58, pp.381-431, 1986
    54 G. Langer, J. Hartmann, and M. Reichling, "Thermal Conductivity of Thin Metallic Films Measured by Photothermal Profile Analysis", Rev. Sci. Instrum., 68(3), pp.1510-1513, 1997
    55 E. T. Ogawa, C. Hu, and P. S. Ho, "Thermal Diffusivity Measurement of Polymeric Thin Films Using the Photothermal Displacement Technique. II. On-Wafer Measurement ", J. Appl. Phys., 86, pp.6018-6037, 1999
    56 P. K. Wong, P. C. W. Fung, H. L. Tam et al., "Thermal-Diffusivity Measurements of an Oriented Superconducting-Film Substrate Composite Using the Mirage Technique", Phys. Rev. B, 51, pp.523, 1995
    57 K. Kurabayashi, "Anisotropic Thermal Properties of Solid Polymers", Int. J. Thermophysics, 22, pp.277-288, 2001
    58 F. Volklein, "Thermal Conductivity and Diffusivity of a Thin Film SiO2-Si3N4 Sandwich System", Thin Solid Films, 188, pp.27-33, 1990
    59 Q. Song, Z. Cui, S. Xia et al., "Measurement of SiNx Thin Film Thermal Property with Suspended Membrane Structure", Sensors and Actuators A, 112, pp.122-126, 2004
    60 A. D. Mcconnell, S. Uma, and K. E. Goodson, "Thermal Conductivity of Doped Polysilicon Layers", J. Microelectromech. Syst., 10, pp.360-369, 2001
    61 Martin von Arx, "Process-Dependent Thin-Film Thermal Conductivities for Thermal CMOS MEMS", J. Microelectromech. Syst., 9, pp.136-145, 2000
    62 C. J. Morath, H. J. Maris, J. J. Cuomo et al., "Picosecond Optical Studies of Amorphous Diamond and Diamo Carbon: Thermal Conductivity and Longitudinal Sound Velocity", J. Appl. Phys., 76, pp.2636, 1994
    63 賴威志 饒達仁, 簡恆傑, 徐振庭, "二氧化矽薄膜之熱傳導係數與邊界熱阻之量測研究", 科儀新知, 162, pp.59-65, 2008
    64 B. Y. Tsui, C. C. Yang, and K. L. Fang, "Anisotropic Thermal Conductivity of Nanoporous Silica Film", Transcation on Electron Devices, 51, pp.20-27, 2004
    65 B. Olson, S. Graham, and K. Chen, "A Practical Extension of the 3ω Method to Multilayer Structures", Rev. Sci. Instrum., 76, pp.053901, 2005
    66 T. Borca-Tasciuc, A. R. Kumar, and G. Chen, "Data Reduction in 3 Omega Method for Thin-Film Thermal Conductivity Determination", Rev. Sci. Instrum., 72, pp.2139-2147, 2001
    67 J. H. Kim, A. Feldman, and D. Novotny, "Application of the Three Omega Thermal Conductivity Measurement Method to a Film on a Substrate of Finite Thickness", J. Appl. Phys., 86, pp.3959-3963, 1999
    68 S. M. Lee, "Thermal Conductivity Measurement of Fluids Using the 3ω Method", Rev. Sci. Instrum., 80, pp.024901, 2009
    69 C. Dames and G. Chen, "1ω, 2ω, and 3ω Methods for Measurements of Thermal Properties", Rev. Sci. Instrum., 76, pp.124902, 2005
    70 H. C. Chien, D. J. Yao, M. J. Huang et al., "Thermal Conductivity Measurement and Interface Thermal Resistance Estimation Using SiO2 Thin Film", Rev. Sci. Instrum., 79, pp.054902, 2008
    71 K. E. Goodson, M. I. Flik, L. T. Su et al., "Prediction and Measurement of the Thermal Conductivity of Amorphous Dielectric Layers", J. Heat Transfer, 116, pp.317-324, 1994
    72 饒達仁, 簡恆傑, 陳昭榮, "金屬電阻溫度係數之自我加熱效應探討", 中華民國第二十八屆全國力學會議, 臺北, 臺灣, R. O. C., 2004
    73 Jr. A. J. Griffin, F. R. Brotzen, and P. J. Loos, "The Effective Transverse Thermal Conductivity of Amorphous Si3N4 Thin Films", J. Appl. Phys., 76, pp.4007-4011, 1994
    74 Jr. A. J. Griffin, F. R. Brotzen, and P. J. Loos, "Effect of Thickness on the Transverse Thermal Conductivity of Thin Dielectric Films", J. Appl. Phys., 75, pp.3761-3764, 1994
    75 Y. S. Touloukian, R. W. Powell, C. Y. Ho et al., Thermal Conductivity:Nonmetallic Solids, New York, IFI/Plenum, 1970
    76 A. Majumdar and P. Reddy, "Role of Electron-Phonon Coupling in Thermal Conductance of Metal-Nonmetal Interfaces", Appl. Phys. Lett., 84, pp.4768-4770, 2004
    77 T.C. Harman, P.J. Taylor, M. P. Walsh et al., "Quantum Dot Superlattice Thermoelectric Materials and. Devices", Science, 297, pp.2229-2232, 2002
    78 W. Kim, J. Zide, A. Gossard et al., "Thermal Conductivity Reduction and Thermoelectric Figure of Merit Increase by Embedding Nanoparticles in Crystalline Semiconductors", Phys. Rev. Lett., 96, pp.045901, 2006
    79 X. F. Tang, W. J. Xie, H. Li et al., "Preparation and Thermoelectric Transport Properties of High-Performance P-type Bi2Te3 with Layered Nanostructure", Appl. Phys. Lett., 90, pp.012102, 2007
    80 R. Venkatasubramanian, E. Siivola, T. Colpitts et al., "Thin-film Thermoelectric Devices with High Room-temperature Figures of Merit ", Nature, 413, pp.597-602, 2001
    81 P. Heo, K. Hagiwara, R. Ichino et al., "Electrodeposition and Thermoelectric Characterization of Bi2Te3 ", J. Electrochem. Soc., 153, pp.C213-217, 2006
    82 M. Y. Kim and T. S. Oh, "Electrodeposition and Thermoelectric Characteristics of Bi2Te3 and Sb2Te3 Films for Thermopile Sensor Applications", J. Electron. Mater., 38, pp.1176-1181, 2009
    83 S. Li, M. S. Toprak, H. M. A. Soliman et al., "Fabrication of Nanostructured Thermoelectric Bismuth Telluride Thick Films by Electrochemical Deposition", Chem. Mater., 18, pp.3627-3633, 2006
    84 G. J. Snyder, J. R. Lim, C. K. Huang et al., "Thermoelectric Microdevice Fabricated by MEMS-Like Electrochemical Process", Nat. Mater., 2, pp.528-531, 2003
    85 A. Mzerd, D. Sayah, J. C. Tedenac et al., "Optical Crystal Growth Conditions of Thin Films of Bi2Te3 Semiconductors", J. Cryst. Growth, 140, pp.365-369, 1994
    86 A. Boulouz, A. Giani, F. Pascal-Delannoy et al., "Growth of Bi2Te3 and Sb2Te3 Thin Films by MOCVD", Mater. Sci. Eng. B, 64, pp.19-24, 1999
    87 A. Dauscher, A. Thomy, and H. Scherrer, "Pulsed Laser Deposition of Bi2Te3 Thin Films", Thin Solid Films, 280, pp.61-66, 1996
    88 R. S. Makala, K. Jagannadham, and B. C. Sales, "Pulsed Laser Deposition of Bi2Te3-Based Thermoelectric Thin Films", J. Appl. Phys., 94, pp.3907-3918, 2003
    89 F. Volklein, V. Baier, U. Dillner et al., "Transport Properties of Flash-Evaporated (Bi1-xSbx)2Te3 Films I: Optimization of Film Properties", Thin Solid Films, 187, pp.253-262, 1990
    90 H. Noro, K. Sato, and H. Kagechika, "The Thermoelectric Properties and Crystallography of Bi-Sb-Te-Se Thin Films Grown by Ion Beam Sputtering", J. Appl. Phys., 73, pp.1252-1260, 1993
    91 廖莉菱, "熱電材料應用於散熱為致冷晶片之技術開發", 國立台灣師範大學機電科技學系, 碩士論文, 2009
    92 C. R. Yang, C. H. Yang, and P. Y. Chen, "Study on Anisotropic Silicon Etching Characteristics in Various Surfactant-Added Tetramethyl Ammonium Hydroxide Water Solutions", J. Micromech. Microeng., 15, pp.2028-2037, 2005
    93 M. Takashiri, K. Miyazaki, S. Tanaka et al., "Effect of Grain Size on Thermoelectric Properties of n -type Nanocrystalline Bismuth-Telluride Based Thin Films", J. Appl. Phys., 104, pp.084302, 2008
    94 T. Thonhauser, T. J. Scheidemantel, J. O. Sofo et al., "Thermoelectric Properties of Sb2Te3 Under Pressure and Uniaxial Stress", Phys. Rev. B, 68, pp.085201, 2003
    95 O. Yamashita, K. Satou, H. Odahara et al., "Dependence of Thermal Conductivity on Electrical Resistivity in Bismuth-Tellurides", J. Phys. Chem. Solids, 66, pp.1287-1293, 2005
    96 M. Takaishi, S. Tanaka, K. Miyazaki et al., "Thermal Conductivity Measurements of Bismuth Telluride Thin Films by Using the 3 Omega Method ", Thermophys Prop, 27, pp.24-26, 2006
    97 S. Miura, Y. Sato, K. Fukuda et al., "Texture and Thermoelectric Properties of Hot-Extruded Bi2Te3 Compound", Mater. Sci. Eng.: A, 277, pp.244-249, 2000
    98 G. J. Snyder, in Thermoelectrics Handbook: Macro to Nano, edited by edited by D. M. Rowe (CRC Press, Boca Raton, FL, 2006), p. chapter 9.
    99 H. Scherrer and S. Scherrer, in Thermoelectrics Handbook: Macro to Nano, edited by edited by D. M. Rowe (CRC Press, Boca Raton, FL, 2006), p. chapter 27.
    100 國科會精儀中心, 微機電系統技術與應用, 國科會精儀中心, 新竹市, 2003
    101 簡恆傑, 李聖良, 楊書榮, "快速電子構裝熱阻量測方法", 中國機械工程學會第二十三屆學術研討會, 臺南, 2006, pp.E5-010
    102 H. C. Chien, D. J. Yao, and C. T. Hsu, "Measurement and Evaluation of the Interfacial Thermal Resistance between a Metal and a Dielectric", Appl, Phys. Lett., 93, pp.231910, 2008
    103 A. V. Sergeev, "Electronic Kapitza Conductance Due to Inelastic Electron-Boundary Scattering", Phy. Rev. B, 58, pp.R10199, 1998
    104 Y. Sungtaek. Ju, "Impact of Nonequilibrium Between Electrons and Phonons on Heat Transfer in Metallic Nanoparticles Sespended in Dielectric Media", J. Heat Transfer, 127, pp.1400-1402, 2005
    105 J. G. Fujimoto, J. M. Liu, and E. P. Ippen, "Femtosecond Laset Interaction with Metallic Tungsten and Nonequilibrium Electron and Lattice Temperature", Phy. Rev. Lett., 53, pp.1837-1840, 1984
    106 T. Q. Qiu and C. L. Tien, "Short-Pulse Laser Heating on Metals", Int. J. Heat Mass Transfer, 35, pp.719-726, 1992
    107 T. Q. Qiu and C. L. Tien, "Heat Transfer Mechanisms During Short-Pulse Laser Heating of Metals", J. Heat Transfer, 115, pp.835-841, 1993
    108 劉靜, 微米奈米尺度傳熱學, 五南圖書出版公司, 台北, 2004
    109 A. N. Smith J. L. Hostetler, D. M. Czajkowsky, and P. M. Norris, "Measurement of The Electron-Phonon Coupling Factor Dependence on Film Thickness and Grain Size in Au, Cr, and Al", Applied Optics, 38, pp.3614-3620, 1999
    110 P. E. Hopkins, J. M. Klopf, and P. M. Norris, "Influence of Interband Transitions on Electron-Phonon Coupling Measurements in Ni Films", Applied Optics, 46, pp.2076-2083, 2007
    111 Z. Lin, L. V. Zhigilei, and Vittorio Celli, "Electron-Phonon Coupling and Electron Heat Capacity of Metals Under Conditions of Strong Electron-Phonon Nonequilibrium", Phy. Rev. B, 77, pp.075133, 2008
    112 J. Hohlfeld, S. -S. Wellershoff, J. G□dde et al., "Electron and Lattice Dynamics Following Optical Excitation of Metals", Chem. Phys., 251, pp.237-258, 2000
    113 C. Kittel, Introduction to Solid State Physics, John Wiley & Sons. Inc, 2004
    114 B. L. Zink and F. Hellman, "Specific Heat and Thermal Conductivity of Low Stress Amorphous Si-N Membranes", Sol. St. Comm., 129, pp.199-204, 2004
    115 L. B. Freund and S. Suresh, Thin Film Materials: Stress, Defect Formation and Surface Evolution, Cambridge University Press, 2003
    116 M. Ohring, The Materials Science of Thin Films, Academic Press, 2002

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE