簡易檢索 / 詳目顯示

研究生: 徐銘佑
Xu, Ming-You
論文名稱: 理論導向之學習分析儀表板系統用於軟體專案課程
Theory-driven Learning Analytics Dashboard for Project-based Software Engineering Courses
指導教授: 雷松亞
Ray, Soumya
口試委員: 林福仁
Lin, Fu-Ren
郭佩宜
Kuo, Pei-Yi
學位類別: 碩士
Master
系所名稱: 科技管理學院 - 服務科學研究所
Institute of Service Science
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 60
中文關鍵詞: 專案導向學習學習分析儀表板軟體評估
外文關鍵詞: project-based learning, learning analytics dashboard, software measurement
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在專案導向教學中,教師需要花費大量的時間與精力在監督學生專案的執行狀況此能夠公正的評估學生的專案成果以及個人對專案的貢獻,為了降低教師評估專案的負擔,學習分析儀表板是常用到的技術,此儀表板能夠收集、評估並展示學生的學習行為,從而幫助教師更輕鬆地去評估學生的專案。為了設計出更好用的學習分析儀表板,本研究採用評估模型理論以及設計準則並提出一個設計程序,同時為了示範這些理論的使用方,開發了一個學習分析儀表板並用於專案導向軟體工程課程。除此之外本研究採用質化研究去收集學生對於此儀表板的回饋,並使用內容分析法歸納資料從而找出能影響有用性的因素,最後討論了這些理論的在設計儀表板上的有效性。


    In a project-based teaching experience, teachers need considerable time and effort in monitoring students' project process to assess their project objectively. Recently, there is increasing interest in learning analytics dashboards to support this learning assessment process. These dashboards collect, measure, and display students' learning behavior, thereby helping teachers obtain more evidence for project assessment with less effort. However, we believe there is room for better theories from measurement and design to bear upon the content and presentation of learning analytics dashboards. To demonstrate the potential for theory-driven design and development, we adopt measurement theories and design principles and propose a new dashboard design process. In particular, we developed a learning analytic dashboard for project-based software engineering courses. After development, we sought the feedback of students who were asked to analyze their own software projects. We performed a qualitative content analysis to interpret their feedback. We will discuss the effectiveness of our theory-driven measurement and design approaches upon the usefulness of such a dashboard.

    摘 要 iv Abstract v List of Tables viii List of Figures ix Chapter 1. Introduction 1 Chapter 2. Background and Theories 3 2.1 Project-based Learning Assessment 3 2.2 Learning Analytics for Project Assessment 4 2.3 Learning Analytics in Software Engineering Course 5 2.4 Learning Analytics Dashboard Design 7 2.5 Measurement Theories 7 2.6 Design Principles 9 Chapter 3. Measurement and Design 14 3.1 Constructing a Formal Measurement Model 14 3.1.1 Goals 14 3.1.2 Questions 15 3.1.3 Measurement Sources and Code Analysis 17 3.1.4 Metrics 22 3.2 Pick the Right Visualization for the Data 27 3.3 Design a Clear and Appealing Visualization 28 3.3.1 Simplification principle 28 3.3.2 Emphasis principle 30 3.4 Design User Experience for Organizing Visual Elements 31 3.4.1 Overview First 32 3.4.2 Zoom and Filter 33 3.4.3 Details-on-Demand 34 Chapter 4. Development and Deployment 35 4.1 Data Collection 35 4.2 Open Source Libraries 36 4.3 Service Architecture 36 Chapter 5. Evaluation of Dashboard Interface 38 5.1 Study Design 38 5.1.1 Participants 38 5.1.2 Materials 38 5.1.3 Procedures 39 5.1.4 Deductive Content Analysis 40 5.2 Result 42 5.2.1 Awareness 42 5.2.2 Reflection 43 5.2.3 Sensemaking 44 5.2.4 General Comments 46 5.3 Finding 47 Chapter 6. Discussion 48 6.1 The Effectiveness of Design Process 48 6.2 Next Iteration 50 6.3 Future Work 51 References 52 Appendix A 57

    Ali, L., Hatala, M., Gašević, D., & Jovanović, J. (2012). A qualitative evaluation of evolution of a learning analytics tool. Computers & Education, 58(1), 470-489.

    Alperowitz, L., Dzvonyar, D., & Bruegge, B. (2016, May). Metrics in Agile project courses. In 2016 IEEE/ACM 38th International Conference on Software Engineering Companion (ICSE-C) (pp. 323-326). IEEE.

    Bengtsson, M. (2016). How to plan and perform a qualitative study using content analysis. NursingPlus Open, 2, 8-14.

    Caldiera, V. R. B. G., & Rombach, H. D. (1994). The goal question metric approach. Encyclopedia of software engineering, 528-532.

    Cavano, J. P., & McCall, J. A. (1978). A framework for the measurement of software quality. ACM SIGMETRICS Performance Evaluation Review, 7(3-4), 133-139.

    Duval, E. (2011). Attention please!: learning analytics for visualization and recommendation. LAK, 11, 9-17.

    Erlingsson, C., & Brysiewicz, P. (2017). A hands-on guide to doing content analysis. African Journal of Emergency Medicine, 7(3), 93-99.

    Evergreen, S., & Metzner, C. (2013). Design principles for data visualization in evaluation. New Directions for Evaluation, 2013(140), 5-20.

    Ferguson, R. (2012). Learning analytics: drivers, developments and challenges. International Journal of Technology Enhanced Learning, 4(5/6), 304-317.

    Few, S. (2006). Information dashboard design.

    Foucault, M., Teyton, C., Lo, D., Blanc, X., & Falleri, J. R. (2015). On the usefulness of ownership metrics in open-source software projects. Information and Software Technology, 64, 102-112.

    Glassy, L. (2006). Using version control to observe student software development processes. Journal of Computing Sciences in Colleges, 21(3), 99-106.

    Hall, G. A., & Munson, J. C. (2000). Software evolution: code delta and code churn. Journal of Systems and Software, 54(2), 111-118.

    Howard, T. (2014). Journey mapping: A brief overview. Communication Design Quarterly Review, 2(3), 10-13.

    Janes, A., Sillitti, A., & Succi, G. (2013). Effective dashboard design. Cutter IT Journal, 26(1), 17-24.

    Ju, A., & Fox, A. (2018, July). Teamscope: measuring software engineering processes with teamwork telemetry. In Proceedings of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education (pp. 123-128). ACM.

    Kaur, M. (2013). Blended learning-its challenges and future. Procedia-Social and Behavioral Sciences, 93, 612-617.

    Khan, M., & Khan, S. S. (2011). Data and information visualization methods, and interactive mechanisms: A survey. International Journal of Computer Applications, 34(1), 1-14.

    Krajcik, J. S., & Blumenfeld, P. C. (2006). Project-based learning.

    Lawrance, J., Jung, S., & Wiseman, C. (2013, March). Git on the cloud in the classroom. In Proceeding of the 44th ACM technical symposium on Computer science education (pp. 639-644). ACM.

    Lee, M. C. (2014). Software Quality Factors and Software Quality Metrics to Enhance Software Quality Assurance. British Journal of Applied Science & Technology, 4, 21.

    Matsuura, S. (2006). An evaluation method of project based learning on software development experiment. ACM SIGCSE Bulletin, 38(1), 163-167.

    Matthies, C., Kowark, T., Richly, K., Uflacker, M., & Plattner, H. (2016, May). How Surveys, Tutors and Software Help to Assess Scrum Adoption in a Classroom Software Engineering Project. In 2016 IEEE/ACM 38th International Conference on Software Engineering Companion (ICSE-C) (pp. 313-322). IEEE.

    Mayring, P. (2004). Qualitative content analysis. A companion to qualitative research, 1, 159-176.

    Menchaca, I., Guenaga, M., & Solabarrieta, J. (2016, November). Using learning analytics to assess project management skills on engineering degree courses. In Proceedings of the Fourth International Conference on Technological Ecosystems for Enhancing Multiculturality (pp. 369-376). ACM.

    Park, Y., & Jo, I. H. (2015). Development of the learning analytics dashboard to support students’ learning performance. Journal of Universal Computer Science, 21(1), 110.

    Reid, K. L., & Wilson, G. V. (2005). Learning by doing: introducing version control as a way to manage student assignments. Acm Sigcse Bulletin, 37(1), 272-276.

    Santos, J. L., Govaerts, S., Verbert, K., & Duval, E. (2012, April). Goal-oriented visualizations of activity tracking: a case study with engineering students. In Proceedings of the 2nd international conference on learning analytics and knowledge (pp. 143-152). ACM.

    Shneiderman, B. (2003). The eyes have it: A task by data type taxonomy for information visualizations. The craft of information visualization, 364-371.

    Traverso-Ribón, I., Ruíz-Rube, I., Dodero, J. M., & Palomo-Duarte, M. (2013, June). Open data framework for sustainable assessment in software forges. In Proceedings of the 3rd International Conference on Web Intelligence, Mining and Semantics (p. 20). ACM.

    Vasilevskaya, M., Broman, D., & Sandahl, K. (2014, March). An assessment model for large project courses. In Proceedings of the 45th ACM technical symposium on Computer science education (pp. 253-258). ACM.

    Verbert, K., Duval, E., Klerkx, J., Govaerts, S., & Santos, J. L. (2013). Learning analytics dashboard applications. American Behavioral Scientist, 57(10), 1500-1509.

    Wilson, A., Watson, C., Thompson, T. L., Drew, V., & Doyle, S. (2017). Learning analytics: challenges and limitations. Teaching in Higher Education, 22(8), 991-1007.

    Yadav, S. S., & Xiahou, J. (2010, June). Integrated project based learning in software engineering education. In 2010 International Conference on Educational and Network Technology (pp. 34-36). IEEE.

    QR CODE