簡易檢索 / 詳目顯示

研究生: 那加
Harisomayajula, Naga Venkata Satyachand
論文名稱: 第六族過渡金屬五重鍵錯合物與多銅金屬鏈的製備與化性分析
Preparation and Reactivity Studies of Quintuply Bonded Group VI Metal Complexes and Extended Copper(I) Atom Chains
指導教授: 蔡易州
Tsai, Yi-Chou
口試委員: 劉瑞雄
Liu, Rai-Shung
鄭建鴻
Cheng, Chien-Hong
許智能
Hsu, C N
劉學儒
Liu, Hsueh-Ju
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 269
中文關鍵詞: 第六族金屬五鍵鹵醯化延長金屬鏈DFT-理論計算
外文關鍵詞: Group VI metals, Quintuple bond, Haloacylation, Extended Metal Atom Chains, DFT-Calculations
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此論文描述具金屬-金屬五重鍵之第六族雙金屬錯合物其合成與反應性探討;並藉由設計具有數個氮原子的有機配基,所建構而成的多銅金屬鏈(EMACs),經過實驗證實雙銅之間所具有的金屬-金屬之間的吸引力(Cuprophilicity)。

    第一個章節論述以雙鉬五重鍵金屬錯合物[Mo2(µ-κ2-HC(N-2,6-iPr2C6H3)2)2] (1)進行簡單的鹵醯化反應。以化合物1與不同的鹵醯反應可得到具β-halo-α,β-quadruply-bonded dimolybdenum acyl complexes anti-Mo2(X)(μ-κ2-OCR)[μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (R = Me, X= Cl (3); R = C6H5, X = Cl (4), Br (5); R= 4-FC6H4, X= Cl (6); R = 2-MeC6H4, X = Cl (7)). 而透過密度泛函理論計算Mo2(Cl)(μ-κ2-OCMe)[μ-κ2-HC(N-2,6-iPr2C6H3)2]2,可以假設其會與oxo-alkylidyne Mo2(O)(μ-Cl)(μ-CMe)[μ-κ2-HC(N-2,6-iPr2C6H3)2]2 以大約100:1的比例達成平衡。在此具有親和性的Mo=O的官能團被證明與多種親電試劑具有反應性,化合物3-7有嘗試與不同當量數的鹵醯進行鹵醯化反應而得到次烷基以架橋形式鍵結在金屬中心的雙鉬金屬錯合物[Mo2(X)(µ-X)(µ-CR)(κ2-O2CR)(µ-κ2-HC(N-2,6-iPr2C6H3)2)2] (R = Me, X = Cl (10); R = C6H5, X = Cl (11), Br (12); R = 4-FC6H4, X = Cl (13); R = 2-MeC6H4, X = Cl (14)).為了瞭解氧代次烷基的產生與其功用,將化合物4與N-methylbenzimidoyl chloride和二苯基次膦酰氯反應得到兩個具苯次甲基的產物,分別是Mo2(Cl)(µ-Cl)(µ-CC6H5)(κ2-ONCH3C6H5)(µ-κ2-HC(N-2,6-iPr2C6H3)2)2] (17)和[Mo2(Cl)(µ-Cl)(µ-CC6H5)(κ2-O2PPh2)(µ-κ2-HC(N-2,6-iPr2C6H3)2)2] (18)。這些結果清楚的表示出卡拜官能基是從第一當量的醯基衍生而來,與作為氧接受者的第二當量的醯基反應以產生羧基基團。

    第二章講述鉻、鉬、鎢等雙金屬多重鍵錯合物的製備。在此,我們合成出一個新穎的NNPtBu2三牙配基,此配基特點為擁有節外生枝的磷原子團。透過使用這個NNPtBu2配基,成功合成並鑑定出鉻(1+)-鉻(1+)四重鍵錯合物 [Cr2(µ-κ2-N-2,6-iPr2C6H3-C5H3N-PtBu2)2] (30)、甲苯配位的雙鉬錯合物 [Mo2(µ-η2-2,3:η2-5,6-C6H5CH3)(µ-κ2-N-2,6-iPr2C6H3-C5H3N-PtBu2)2] (32)、和一個鎢(2+)-鎢(3+)混價錯合物 [W2(µ-Cl)(Cl2)(µ-κ2-N-2,6-iPr2C6H3-C5H3N-PtBu2)2] (33)。
    第三章中將進入新製備的雙鉻金屬五重鍵錯合物(30)的反應性的討論。在這裡我們嘗試利用錯合物 30 催化部分在有機反應常被需要的反應(例如:吡啶的硼氫化反應與碳氫鍵活化反應; 碳鋅化以及(sp3)碳-硫鍵活化反應)。透過與吡啶硼烷試劑(C5H5N·BH3, 2-Me-C5H4N·BH3, 4-Me-C5H4N·BH3)反應我們能夠製備{Cr2(µ-κ2-(N-2,6-iPr2C6H3-C5H3N-PtBu2)]2(4-RC5H5NBH2)} (R = H (36), R = Me (37)), {Cr2(µ-κ2-(N-2,6-iPr2C6H3-C5H3N-PtBu2)]2(2-CH3C5H5NBH2)}R = Me, R’ = H (38)。 此外,吡啶硼烷試劑與雙氮基眯配位基配味的雙鉻金屬五重鍵錯合物[Cr2(μ-κ2-HC(N-2,6-iPr2C6H3)2)2] (24)反應我們能夠製備錯合物吡啶碳氫鍵活化雙鉻金屬四重鍵錯合物[Cr2(µ-κ2-HC(N-2,6-iPr2C6H3)2(µ-H)C5H4NBH3] (39)。錯合物 30 與二苯基鋅能夠進行碳鋅化反應形成錯合物cis-(µ-ZnC6H5)(η1-C6H5)[Mo2(µ-κ2-HC(N-2,6-iPr2C6H3)2)2] (32),最後能夠在與二甲基硫的反應中獲得(sp3)碳-硫鍵活化的錯合物trans-(µ-SMe)2[µ-κ2-Cr(N-2,6-iPr2C6H3-C5H3N-PtBu2)]2 (41)。

    第四章在描述兩種由六牙配基bis(pyridylamido)amidinate構成六銅(1+)線型單體錯合物再經由ligand-unsupported cuprophilicity形成十二銅(1+)擴展金屬鍊[Cu6(μ6-κ6-BPAAAr)2]2 (522: Ar = Dmp; 532: Ar = Mes) 的製備方法以及特性解析。此外,三個至六個銅(1+)金屬鍊也被合成鑑定出來。基於X光單晶繞射分析的結果,522 和 532中的兩個六銅(1+)線型單體錯合物為彎曲結構,並且銅和銅之間有鍵結。透過拉曼光譜亦能證實兩個線型單體錯合物之間有ligand-unsupported 銅(1+)-銅(1+)鍵。DFT理論計算得出微弱的軌域吸引作用力導致ligand-unsupported cuprophilicity的現象,作用力大約為2.4 kcal/mol。


    This dissertation describes the synthesis and reactivity studies of quintuply bonded group VI metal complexes. Additionally, several copper(I) extended metal atom chains (EMACs) are prepared by using multi-nitrogen donor ligands. For well understanding, this thesis is divided into four chapters.
    The first chapter describes the facile haloacylation of quintuply bonded dimolybdenum amidinate [Mo2(µ-κ2-HC(N-2,6-iPr2C6H3)2)2] (1). Reaction of 1 with various acyl halides resulted in the formation of β-halo-α,β-quadruply-bonded dimolybdenum acyl complexes anti-Mo2(X)(μ-κ2-OCR)[μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (R = Me, X= Cl (3); R = C6H5, X = Cl (4), Br (5); R= 4-FC6H4, X= Cl (6); R = 2-MeC6H4, X = Cl (7)). By performing DFT calculations on Mo2(Cl)(μ-κ2-OCMe)[μ-κ2-HC(N-2,6-iPr2C6H3)2]2 suggested that it equilibrates with the oxo-alkylidyne Mo2(O)(μ-Cl)(μ-CMe)[μ-κ2-HC(N-2,6-iPr2C6H3)2]2 in a ratio of about 100:1. The nucleophilic Mo=O functionality turned out to be reactive towards several electrophiles. Complexes 3-7 were then further treated with another one equiv of acyl halides RC(O)X to undergo haloacylation and yielded alkylidyne-bridged dimolybdenum species [Mo2(X)(µ-X)(µ-CR)(κ2-O2CR)(µ-κ2-HC(N-2,6-iPr2C6H3)2)2] (R = Me, X = Cl (10); R = C6H5, X = Cl (11), Br (12); R = 4-FC6H4, X = Cl (13); R = 2-MeC6H4, X = Cl (14)). To understand the formation of oxo-alkylidyne functionalities, reactions of 4 with N-methylbenzimidoyl chloride and diphenylphoshinic chloride were performed and yielded two benzylidyne species Mo2(Cl)(µ-Cl)(µ-CC6H5)(κ2-ONCH3C6H5)(µ-κ2-HC(N-2,6-iPr2C6H3)2)2] (17) and [Mo2(Cl)(µ-Cl)(µ-CC6H5)(κ2-O2PPh2)(µ-κ2-HC(N-2,6-iPr2C6H3)2)2] (18). These results clearly indicated that the carbyne groups were derived from the first equivalent of acyl group and the second acyl group served as an oxygen acceptor to give the carboxylato group.
    The second chapter shows the preparation of Cr, Mo and W metal-metal multiply bonded bimetallic units. Herein, we synthesized a novel tridentate NNPtBu2 ligand which features a pendent phosphorous atom in the supporting ligand. By using this NNPtBu2 ligand, a Cr(I)-Cr(I) quintuple bond complex [Cr2(µ-κ2-N-2,6-iPr2C6H3-C5H3N-PtBu2)2] (30), toluene coordinated Mo-Mo complex [Mo2(µ-η2-2,3:η2-5,6-C6H5CH3)(µ-κ2-N-2,6-iPr2C6H3-C5H3N-PtBu2)2] (32), and a mix-valent W(II)-W(III) species [W2(µ-Cl)(Cl2)(µ-κ2-N-2,6-iPr2C6H3-C5H3N-PtBu2)2] (33) were successfully isolated and completely characterized.
    The third chapter deals with the reactivity studies of newly prepared dichromium quintuply bonded complex (30). Herein, the performed reactions (hydroboration of pyridine, C-H bond activation of pyridine, carbozincation and C(sp3)-S activation) are similar to the widely used reactions in organic chemistry. Upon addition of pyridyl boranes (C5H5N·BH3, 2-Me-C5H4N·BH3, 4-Me-C5H4N·BH3) on 30 produced {Cr2(µ-κ2-(N-2,6-iPr2C6H3-C5H3N-PtBu2)]2(4-RC5H5NBH2)} (R = H (36), R = Me (37)), {Cr2(µ-κ2-(N-2,6-iPr2C6H3-C5H3N-PtBu2)]2(2-CH3C5H5NBH2)}R = Me, R’ = H (38). In addition, reaction of pyridyl borane with NCN supported quintuple bonded complex [Cr2(μ-κ2-HC(N-2,6-iPr2C6H3)2)2] (24) yielded a C-H bond activated pyridine dichromium quadruply bonded complex [Cr2(µ-κ2-HC(N-2,6-iPr2C6H3)2(µ-H)C5H4NBH3] (39). Furthermore, complex 30 underwent carbozincation with Ph2Zn and gave an anti-(µ-ZnC6H5)(η1-C6H5)[µ-κ2-Cr(N-2,6-iPr2C6H3-C5H3N-PtBu2)]2 (40) which is in contrast to the prepared cis-(µ-ZnC6H5)(η1-C6H5)[Mo2(µ-κ2-HC(N-2,6-iPr2C6H3)2)2] (32) in terms of structural features. Also, complex 30 has an ability to activate C(sp3)-S bond upon reaction of dimethyl sulfide and produced a trans-(µ-SMe)2[µ-κ2-Cr(N-2,6-iPr2C6H3-C5H3N-PtBu2)]2 (41).
    The fourth chapter describes the synthesis and characterization of two dodecacopper(I) EMACs [Cu6(μ6-κ6-BPAAAr)2]2 (522: Ar = Dmp; 532: Ar = Mes) constructed by two hexadentate bis(pyridylamido)amidinate-supported hexacopper(I) string complexes (monomers) via the ligand-unsupported cuprophilicity. In addition, 3-6 copper(I) atom chains were also synthesized and characterized. Based on X-ray crystallography, the two hexacopper(I) fragments in 522 and 532 show a bent conformation with short unsupported Cu-Cu contacts. Furthermore, the observed short ligand-unsupported Cu(I)-Cu(I) contacts were confirmed by Raman spectroscopy. DFT calculations indicate the ligand-unsupported cuprophilicity derive from weak attractive orbital interactions, and the strength is estimated to be 2.4 kcal/mol.

    List of Schemes………………………….……………………………………………………….V List of Figures………………………………………………………………………………….VII List of Tables……………………………………………………………………………………IX Acknowledgement……………………………………………………………………………....XI Abstract……………………………………………………………………………………….XIII List of Publications……………………….…………………………………………………XVII Symbols and Abbreviations………………………………………………………………XVIII Chapter I: Reductive cleavage of acyl halides to carboxylato alkylidyne complexes from their reactions with the quintuply bonded dimolybdenum amidinate 1.1 History of metal-metal multiple bonds...............................………………………………..2 1.1.1 Discovery of First Metal-to-Metal Quintuple bond…....………………………………..3 1.1.2 Factors affecting the strength of metal-metal quintuple bonds....……………………….4 1.1.3 Nitrogen donor ligand-supported quintuply bonded dinuclear species……………….6 1.1.4 Parallels between C-C triple bonds and M-M quintuple bonds……………………….8 1.1.5 Methods to generate metal carbynes…………………………………………………….9 1.2 Results and Discussion...........................................................................................................10 1.2.1 Haloacylation of the Mo-Mo quintuple bond………………………………………….10 1.2.2 Structural characterization of complexes 3-7……………………………………….....12 1.2.3 Synthesis of bridging-alkylidyne dimolybdenum complexes…………………………14 1.2.4 Reaction of 1 with benzoyl fluoride……………………………………………………16 1.2.5 Structural characterization of the alkylidyne-bridged dimolybdenum complexes…….17 1.2.6 More experimental evidence to support the oxo-alkylidyne intermediates……………21 1.2.7 Reduction of 13………………………………………………………………………26 1.3 Conclusions………………………………………………………………………………..28 1.4 Experimental section…...…………………………………………………………………..28 1.5 References…………………………………………………………………………………..45 1.6 X-ray crystallography……………………………………………………………………... 49 1H and 13C NMR spectra…………………………………………………………………...64 Chapter II: Synthesis of low-valent, low-coordinate group VI (Cr, Mo and W) metal-metal multiple bonds 2.1 Introduction………………………………………………………………………………..104 2.1.1 Synthesis of heteronuclear quintuply bonded dinuclear complex…………………....104 2.2 Results and Discussion.........................................................................................................106 2.2.1 Synthesis of the NNPtBu2 ligand…………………………………………………….106 2.2.2 Synthesis of dichromium quintuple bond complex supported by NNPtBu2 ligand…………………………………………………….………………………………….106 2.2.3 Synthesis of the quintuply bonded dimolybdenum complex supported by the NNPtBu2 ligand……………………………………………………………………………………….108 2.2.4 Synthesis of the multiply bonded ditungsten complex supported by the NNPtBu2 ligand………………………………………………………………………………………..111 2.3 Conclusions………………………………………………………………………………113 2.4 Experimental section…...…………………………………………………………………113 2.5 References………………………………………………………………………………….117 2.6 X-ray crystallography……………………………………………………………………..120 1H and 13C NMR spectra…………...……………………………………………………...125 Chapter III: Reaction chemistry of the Cr-Cr quintuply bond 3.1 Introduction………………………………………………………………………………..134 3.1.1 Hydroboration of pyridine...………………………………………………………….134 3.1.2 C-H bond activation of pyridine……………………………………………………...135 3.1.3 Carbozincation of alkenes and alkynes…...…………………………………………..136 3.1.4 Cleavage of C(sp3)-S bond of dimethyl sulfide……...……………………………….140 3.2 Results and Discussion…………………………………………………………………..141 3.2.1 1,2-hydroboration of pyridine on the Cr-Cr Quintuple bond....………………………141 3.2.2 C-H bond activation of pyridine on the Cr-Cr Quintuple bond...…………………….143 3.2.3 Carbozincation of the quintuply bonded dichromium complex…..………………….145 3.2.4 Reductive cleavage of the C-S bond of dimethyl sulfide by the quintuply bonded dichromium complex……………………………………………………………………….146 3.3 Conclusions………………………………...……………………………………………....147 3.4 Experimental section............................................................................................................148 3.5 References………………………………………………………………………………….152 3.6 X-ray crystallography……………………………………………………………………..156 1H and 13C NMR spectra…………………………………………………………………..162 Chapter IV: Ligand-unsupported cuprophilicity in the preparation of dodecacopper(I) complexes and Raman studies 4.1 Introduction………………………………………………………………………………..180 4.1.1 Introduction of EMACs………………………………………………………………180 4.1.2 Metallophilicity and extended copper(I) atom chains………………………………..182 4.2 Results and Discussion…………………………………………………………………..184 4.2.1 Synthesis of multinitrogen ligands……………………………………………………184 4.2.2 Synthesis of tri- and tetra-copper complexes…………………………………………186 4.2.3 Synthesis of the octahedral hexacopper(I) complex …………………………………189 4.2.4 Synthesis of linear hexacopper(I) complex…………………………………………190 4.2.5 DFT calculations of hexacopper(I) complexes (51 and 52)…………………………..193 4.2.6 Synthesis of dodecacopper(I) complexes via unsupported cuprophilic interaction…..194 4.2.7 Raman Spectroscopy to study the unsupported cuprophilic interactions….…………199 4.2.8 DFT Calculations on 522……………………………………………………………...200 4.2.9 Comparison of 522 and 532 with similar complexes…………………………………201 4.3 Conclusions………………………………………………………………………………202 4.4 Experimental section……...………………………………………………………………202 4.5 References………………………………………………………………………………….224 4.6 X-ray crystallography……………………………………………………………………..229 1H and 13C NMR spectra………………………………………………………………...236

    Chapter I
    1. G. N. Lewis, J. Am. Chem. Soc. 1916, 38, 762-785.
    2. F. A. Cotton, C. A. Murillo, R. A. Walton, Multiple Bond Between Metal Atoms, 3rd ed.; Springer: Berlin, 2005.
    3. J. A. Bertrand, F. A. Cotton, W. A. Dollase, J. Am. Chem. Soc. 1963, 85, 1349-1350.
    4. J. A. Bertrand, F. A. Cotton, W. A. Dollase, Inorg. Chem. 1963, 2, 1166-1171.
    5. W. I. Robinson, J. E. Fergusson, B. R. Penfold Proc. Chem. Soc.1963, 1116.
    6. A. Werner, Neuere Anschauungen auf dem Gebiete der anorganischen Chemie, Braunschweig, 1905.
    7. P. Pfeiffer, in Great Chemists, ed. E. Farber, Interscience, New York, 1961, p. 1233.
    8. G. B. Kauffman, Coord. Chem. Rev. 1973, 11, 161-188.
    9. G. B. Kauffman, Coord. Chem. Rev. 1974, 12, 105-149.
    10. G. B. Kauffman, Coord. Chem. Rev. 1975, 15, 1-92.
    11. G. B. Kauffman, Coord. Chem. Rev. 1973, 9, 339-363.
    12. F. A. Cotton, N. F. Curtis, C. B. Harris, B. F. G. Johnson, S. J. Lippard, J. T. Mague, W. R. Robinson, J. S. Wood, Science 1964, 145, 1305-1307.
    13. W. Klotzbuecher, G. A. Ozin, Inorg. Chem. 1977, 16, 984-987.
    14. S. K. Gupta, R. M. Atkins, K. A. Gingerich, Inorg. Chem. 1978, 17, 3211-3213.
    15. M. D. Morse, Chem. Rev., 1986, 86, 1049-1109.
    16. S. M. Casey, P. W. Villalta, A. A. Bengali, C. L. Cheng, J. P. Dick, P. T. Fenn, D. G. Leopold, J. Am. Chem. Soc. 1991, 113, 6688-6689.
    17. M. H. Chisholm, A. M. Macintosh, Chem. Rev. 2005, 105, 2949-2976.
    18. A. Dedieu, T. A. Albright, R. Hoffmann, J. Am. Chem. Soc. 1979, 101, 3141-3151.
    19. F. Weinhold, C. R. Landis, Chem. Ed. Res. Pract. 2001, 2, 91-104.
    20. F. Weinhold, C. R. Landis, Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective, Cambridge Univer-sity Press, Cambridge, 2005, 555-559.
    21. T. Nguyen, A. D. Sutton, M. Brynda, J. C. Fettinger, G. J. Long, P. P. Power, Science 2005, 310, 844-847.
    22. R. Wolf, C. Ni, T. Nguyen, M. Brynda, G. J. Long, A. D. Sutton, R. C. Fischer, J. C. Fettinger, M. Hellman, L. Pu, P. P. Power, Inorg. Chem. 2007, 46, 11277-11290.
    23. K. A. Kreisel, G. P. A. Yap, O. Dmitrenko, C. R. Landis, K. H. Theopold, J. Am. Chem. Soc. 2007, 129, 14162-14163.
    24. Y.-C. Tsai, C.-W. Hsu, J.-S. K. Yu, G.-H. Lee, Y. Wang, T.-S. Kuo, Angew. Chem. Int. Ed. 2008, 47, 7250-7253.
    25. C.-W. Hsu, J.-S. K. Yu, C.-H. Yen, G.-H. Lee, Y. Wang, Y.-C. Tsai, Angew. Chem. Int. Ed. 2008, 47, 9933-9936.
    26. A. Noor, F. R. Wagner, R. Kempe, Angew. Chem. Int. Ed. 2008, 47, 7246-7249.
    27. A. Noor, G. Glatz, R. Müller, M. Kaupp, S. Demeshko, R. Kempe, Nat. Chem. 2009, 1, 322-325.
    28. A. Noor, G. Glatz, R. Müller, M. Kaupp, S. Demeshko, R. Kempe, Z. Anorg. Allg. Chem. 2009, 635, 1149-1152.
    29. S.-C. Liu, W.-L. Ke, J.-S. K. Yu, T.-S. Kuo, Y.-C. Tsai, Angew. Chem. Int. Ed. 2012, 51, 6394-6397.
    30. Y.-L. Huang, D.-Y. Lu, H.-C. Yu, J.-S. K. Yu, C.-W. Hsu, T.-S. Kuo, G.-H. Lee, Y. Wang, Y.-C. Tsai, Angew. Chem. Int. Ed. 2012, 51, 7781-7785.
    31. L. J. Clouston, R. B. Siedschlag, P. A. Rudd, N. Planas, S. Hu, A. D. Miller, L. Gagliardi, C. C. Lu, J. Am. Chem. Soc. 2013, 135, 13142-13148.
    32. M. Carrasco, N. Curado, C. Maya, R. Peloso, A. Rodríguez, E. Ruiz, S. Alvarez, E. Carmona, Angew. Chem. Int. Ed. 2013, 52, 3227-3231.
    33. A. Noor, T. Bauer, T. K. Todorova, B. Weber, L. Gagliardi, R. Kempe, Chem. Eur. J. 2013, 19, 9825-9832.
    34. D.-Y. Lu, T.-S. Kuo, Y.-C. Tsai, Angew. Chem. Int. Ed. 2016, 55, 11614-11618.
    35. Y.-C. Tsai, H.-Z. Chen, C.-C. Chang, J.-S. K. Yu, G.-H. Lee, Y. Wang, T.-S. Kuo, J. Am. Chem. Soc. 2009, 131, 12534-12535.
    36. C. R. Landis, F. Weinhold, J. Am. Chem. Soc. 2006, 128, 7335-7345.
    37. Y.-C. Tsai, Y.-M. Lin, J.-S. K. Yu, J.-K. Hwang, J. Am. Chem. Soc. 2006, 128, 13980-13981.
    38. Y.-C. Tsai, H.-Z. Chen, C.-C. Chang, J.-S. K. Yu, G.-H. Lee, Y. Wang, T.-S. Kuo, J. Am. Chem. Soc. 2009, 131, 12534-12535.
    39. T. A. Budzichowski, M. H. Chisholm, D. B. Tiedtke, J. C. Huffman, W. E. Streib, Organometallics 1995, 14, 2318-2324.
    40. K. J. Ahmed, M. H. Chisholm, Organometallics 1986, 5, 185-189.
    41. M. H. Chisholm, Chem. Rec. 2001, 1, 12-23.
    42. R. R. Schrock, M. L. Listemann, L. G. Sturgeoff, J. Am. Chem. Soc. 1982, 104, 4291-4293.
    43. H. Strutz, R. R. Schrock, Organometallics 1984, 3, 1600-1601.
    44. H.-Z. Chen, S.-C. Liu, C.-H. Yen, J.-S. K. Yu, Y.-J. Shieh, T.-S. Kuo, Y.-C. Tsai, Angew. Chem. Int. Ed. 2012, 51, 10342-10346.
    45. A. Noor, E. Sobgwi Tamne, S. Qayyum, T. Bauer, R. Kempe, Chem. Eur. J. 2011, 17, 6900-6903.
    46. J. Shen, G. P. A. Yap, J.-P. Werner, K. H. Theopold, Chem. Commun. 2011, 47, 12191-12193.
    47. D.-Y. Lu, P. P. Y. Chen, T.-S. Kuo, Y.-C. Tsai, Angew. Chem. Int. Ed. 2015, 127, 9258-9258.
    48. A. Noor, R. Kempe, Inorg. Chim. Acta 2015, 424, 75-82.
    49. A. K. Nair, N. V. S. Harisomayajula, Y.-C. Tsai, Inorg. Chim. Acta 2015, 424, 51-62.
    50. A. K. Nair, N. V. S. Harisomayajula, Y.-C. Tsai, Dalton Trans. 2014, 43, 5618-5638.
    51. N. V. S. Harisomayajula, A. K. Nair, Y.-C. Tsai, Chem. Commun. 2014, 50, 3391-3412.
    52. F. R. Wagner, A. Noor, R. Kempe, Nat. Chem. 2009, 1, 529-536.
    53. A. Noor, S. Schwarz, R. Kempe, Organometallics 2015, 34, 2122-2125.
    54. A. Noor, S. Qayyum, T. Bauer, S. Schwarz, B. Weber, R. Kempe, Chem. Commun. 2014, 50, 13127-13130.
    55. C. Schwarzmaier, A. Noor, G. Glatz, M. Zabel, A. Y. Timoshkin, B. M. Cossairt, C. C. Cummins, R. Kempe, M. Scheer, Angew. Chem. Int. Ed. 2011, 50, 7283-7286.
    56. E. S. Tamne, A. Noor, S. Qayyum, T. Bauer, R. Kempe, Inorg. Chem. 2013, 52, 329-336.
    57. P.-F. Wu, S.-C. Liu, Y.-J. Shieh, T.-S. Kuo, G.-H. Lee, Y. Wang, Y.-C. Tsai, Chem. Commun. 2013, 49, 4391-4393.
    58. C. Ni, B. D. Ellis, G. J. Long, P. P. Power, Chem. Commun. 2009, 2332-2334.
    59. J. Shen, G. P. A. Yap, K. H. Theopold, J. Am. Chem. Soc. 2014, 136, 3382-3384.
    60. J. Shen, G. P. A. Yap, K. H. Theopold, Chem. Commun. 2014, 50, 2579-2581.
    61. A. Noor, E. S. Tamne, B. Oelkers, T. Bauer, S. Demeshko, F. Meyer, F. W. Heinemann, R. Kempe, Inorg. Chem. 2014, 53, 12283-12288.
    62. M. L. Listemann, R. R. Schrock, Organometallics 1985, 4, 74-83.
    63. M. H. Chisholm, E. R. Davidson, K. B. Quinlan, J. Am. Chem. Soc. 2002, 124, 15351-15358.
    64. M. H. Chisholm, J. A. Klang, J. Am. Chem. Soc. 1989, 111, 2324-2325.
    65. M. H. Chisholm, K. Folting, J. A. Klang, Organometallics 1990, 9, 607-613.
    66. M. H. Chisholm, K. Folting, K. C. Glasgow, E. Lucas, W. E. Streib, Organometallics 2000, 19, 884-892.
    67. M. A. Alvarez, M. E. García, M. E. Martínez, S. Menéndez, M. A. Ruiz, Organometallics 2010, 29, 710-713.
    68. H.-G. Chen, H.-W. Hsueh, T.-S. Kuo, Y.-C. Tsai, Angew. Chem. Int. Ed. 2013, 52, 10256-10260.
    69. H. Martens, F. Janssens, G. Hoornaert, Tetrahedron 1975, 31, 177-183.
    70. A. E. Pohland, W. R. Benson, Chem. Rev. 1966, 161-197.
    71. L. J. Gooßen, N. Rodríguez, K. Gooßen, Angew. Chem. Int. Ed. 2009, 48, 9592-9594.
    72. J. P. Collman, L. G. Hegedus, J. R. Norton, R. G. Finke, Principles and Applications of Organotransition Metal Chemistry, University Science Books, Mill Valley, 1987.
    73. J. Halpern, Acc. Chem. Res. 1970, 3, 386-392.
    74. F. A. Cotton, L. M. Daniels, E. A. Hillard, C. A. Murillo, Inorg. Chem. 2002, 41, 2466-2470.
    75. R. R. Schrock, Chem. Rev. 2002, 102, 145-180.
    76. M. E. García, A. Ramos, M. A. Ruiz, M. Lanfranchi, L. Marchio, Organometallics 2007, 26, 6197-6212.
    77. M. D. Curtis, Polyhedron 1987, 6, 759-782.
    78. M. A. Alvarez, M. E. García, D. García-Vivó, M. E. Martínez, M. A. Ruiz, Organometallics 2011, 30, 2189-2199.
    79. Y. Kajita, T. Ogawa, J. Matsumoto, H. Masuda, Inorg. Chem. 2009, 48, 9069-9071.
    80. M. Carrasco, N. Curado, E. Álvarez, C. Maya, R. Peloso, M. L. Poveda, A. Rodríguez, E. Ruiz, S. Álvarez, E. Carmona, Chem. Eur. J. 2014, 20, 6092-6102.
    81. G. Merino, K. J. Donald, J. S. D'Acchioli, R. Hoffmann, J. Am. Chem. Soc. 2007, 129, 15295-15302.
    82. C. A. Nijhuis, E. Jellema, T. J. J. Sciarone, A. Meetsma, P. H. M. Budzelaar, B. Hessen, Eur. J. Inorg. Chem. 2005, 2005, 2089-2099.
    83. K. M. Kuhn, R. H. Grubbs, Org. Lett. 2008, 10, 2075-2077.
    84. J. E. Mills, R. M. Cosgrove, R. D. Shah, C. A. Maryanoff, V. Paragamian, J. Org. Chem. 1984, 49, 546-547.
    85. B. A. Howell, K. E. Carter, J. Therm. Anal. Calorim. 2010, 102, 493-498.
    86. Gaussian 09, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; J. A. Montgomery, Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Gaussian, Inc., Wallingford CT, 2009.
    87. Becke, A. D. Phys. Rev. 1988, A38, 3098-3100.
    88. Perdew, J. P. Phys. Rev. 1986, B33, 8822-8824.
    89. Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
    90. Feller, D. J. Comp. Chem. 1996, 17, 1571-1586.
    91. Schuchardt, K. L.; Didier B. T.; Elsethagen, T.; Sun, L.; Gurumoorthi, V.; Chase, J.; Li, J.; Windus, T. L. J. Chem. Inf. Model. 2007, 47, 1045-1052.

    Chapter II
    1. Y.-L. Huang, D.-Y. Lu, H.-C. Yu, J.-S. K. Yu, C.-W. Hsu, T.-S. Kuo, G.-H. Lee, Y. Wang, Y.-C. Tsai, Angew. Chem. Int. Ed. 2012, 51, 7781-7785.
    2. C. Ni, B. D. Ellis, G. J. Long, P. P. Power, Chem. Commun. 2009, 2332-2334.
    3. A. Noor, G. Glatz, R. Müller, M. Kaupp, S. Demeshko, R. Kempe, Nat. Chem. 2009, 1, 322-325.
    4. J. Shen, G. P. A. Yap, J.-P. Werner, K. H. Theopold, Chem. Commun. 2011, 47, 12191-12193.
    5. A. Noor, E. Sobgwi Tamne, S. Qayyum, T. Bauer, R. Kempe, Chem. Eur. J. 2011, 17, 6900-6903.
    6. C. Schwarzmaier, A. Noor, G. Glatz, M. Zabel, A. Y. Timoshkin, B. M. Cossairt, C. C. Cummins, R. Kempe, M. Scheer, Angew. Chem. Int. Ed. 2011, 50, 7283-7286.
    7. P.-F. Wu, S.-C. Liu, Y.-J. Shieh, T.-S. Kuo, G.-H. Lee, Y. Wang, Y.-C. Tsai, Chem. Commun. 2013, 49, 4391-4393.
    8. E. S. Tamne, A. Noor, S. Qayyum, T. Bauer, R. Kempe, Inorg. Chem. 2013, 52, 329-336.
    9. A. Noor, E. S. Tamne, B. Oelkers, T. Bauer, S. Demeshko, F. Meyer, F. W. Heinemann, R. Kempe, Inorg. Chem. 2014, 53, 12283-12288.
    10. H.-G. Chen, H.-W. Hsueh, T.-S. Kuo, Y.-C. Tsai, Angew. Chem. Int. Ed. 2013, 52, 10256-10260.
    11. H.-Z. Chen, S.-C. Liu, C.-H. Yen, J.-S. K. Yu, Y.-J. Shieh, T.-S. Kuo, Y.-C. Tsai, Angew. Chem. Int. Ed. 2012, 51, 10342-10346.
    12. A. Noor, S. Qayyum, T. Bauer, S. Schwarz, B. Weber, R. Kempe, Chem. Commun. 2014, 50, 13127-13130.
    13. J. Shen, G. P. A. Yap, K. H. Theopold, J. Am. Chem. Soc. 2014, 136, 3382-3384.
    14. J. Shen, G. P. A. Yap, K. H. Theopold, Chem. Commun. 2014, 50, 2579-2581.
    15. A. Noor, S. Schwarz, R. Kempe, Organometallics 2015, 34, 2122-2125.
    16. D.-Y. Lu, P. P. Y. Chen, T.-S. Kuo, Y.-C. Tsai, Angew. Chem. Int. Ed. 2015, 54, 9106-9110.
    17. A. K. Nair, N. V. S. Harisomayajula, Y.-C. Tsai, Inorg. Chim. Acta 2015, 424, 51-62.
    18. L. J. Clouston, R. B. Siedschlag, P. A. Rudd, N. Planas, S. Hu, A. D. Miller, L. Gagliardi, C. C. Lu, J. Am. Chem. Soc. 2013, 135, 13142-13148.
    19. A. Noor, F. R. Wagner, R. Kempe, Angew. Chem. Int. Ed. 2008, 47, 7246-7249.
    20. Y.-C. Tsai, H.-Z. Chen, C.-C. Chang, J.-S. K. Yu, G.-H. Lee, Y. Wang, T.-S. Kuo, J. Am. Chem. Soc. 2009, 131, 12534-12535.
    21. D.-Y. Lu, T.-S. Kuo, Y.-C. Tsai, Angew. Chem. Int. Ed. 2016, 55, 11614-11618.
    22. F. A. Cotton, C. A. Murillo, R. A. Walton, Multiple Bond Between Metal Atoms, 3rd ed., Springer, Berlin, 2005.
    23. M. Carrasco, N. Curado, E. Álvarez, C. Maya, R. Peloso, M. L. Poveda, A. Rodríguez, E. Ruiz, S. Álvarez, E. Carmona, Chem. Eur. J. 2014, 20, 6092-6102.
    24. G. Merino, K. J. Donald, J. S. D'Acchioli, R. Hoffmann, J. Am. Chem. Soc. 2007, 129, 15295-15302.
    25. Y. Kajita, T. Ogawa, J. Matsumoto, H. Masuda, Inorg. Chem. 2009, 48, 9069-9071.
    26. M. Carrasco, N. Curado, C. Maya, R. Peloso, A. Rodríguez, E. Ruiz, S. Alvarez, E. Carmona, Angew. Chem. Int. Ed. 2013, 52, 3227-3231.
    27. P. Mountford, J. A. G. Williams, J. Chem. Soc., Dalton Trans. 1993, 877-883.
    28. F. A. Cotton, R. H. Niswander, J. C. Sekutowski, Inorg. Chem. 1979, 18, 1152-1159.
    29. F. A. Cotton, P. Huang, C. A. Murillo, D. J. Timmons, Inorg. Chem. Commun. 2002, 5, 501-504.
    30. F. A. Cotton, P. E. Fanwick, R. H. Niswander, J. C. Sekutowski, J. Am. Chem. Soc. 1978, 100, 4725-4732.
    31. F. A. Cotton, R. H. Niswander, J. C. Sekutowski, Inorg. Chem. 1978, 17, 3541-3545.
    32. A. R. Chakravarty, F. A. Cotton, E. S. Shamshoum, Inorg. Chem. 1984, 23, 4216-4221.
    33. F. A. Cotton, W. H. Ilsley, W. Kaim, Inorg. Chem. 1980, 19, 1450-1452.
    34. F. A. Cotton, W. H. Illsley, W. Kaim, Inorg. Chem. 1979, 18, 3569-3571.
    35. F. A. Cotton, W. Wang, Inorg. Chem. 1984, 23, 1604-1610.
    36. F. A. Cotton, W. H. Ilsley, W. Kaim, Inorg. Chem. 1980, 19, 1453-1457.
    37. F. A. Cotton, L. R. Falvello, S. Han, W. Wang, Inorg. Chem. 1983, 22, 4106-4112.
    38. F. A. Cotton, T. Ren, J. Am. Chem. Soc. 1992, 114, 2237-2242.
    39. M. H. Chisholm, H. T. Chiu, J. C. Huffman, Polyhedron 1984, 3, 759-760.
    40. K. M. Carlson-Day, J. L. Eglin, L. T. Smith, R. J. Staples, Inorg. Chem. 1999, 38, 2216-2220.
    41. D. V. Baxter, R. H. Cayton, M. H. Chisholm, J. C. Huffman, E. F. Putilina, S. L. Tagg, J. L. Wesemann, J. W. Zwanziger, F. D. Darrington, J. Am. Chem. Soc. 1994, 116, 4551-4566.
    42. F. A. Cotton, W. Wang, Inorg. Chem. 1982, 21, 3859-3860.
    43. A. P. Sattelberger, K. W. McLaughlin, J. C. Huffman, J. Am. Chem. Soc. 1981, 103, 2880-2882.
    44. D. J. Santure, J. C. Huffman, A. P. Sattelberger, Inorg. Chem. 1985, 24, 371-378.
    45. D. J. Santure, J. C. Huffman, A. P. Sattelberger, Inorg. Chem. 1984, 23, 938-945.
    46. F. A. Cotton, L. R. Falvello, W. Wang, Inorg. Chim. Acta 1997, 261, 77-81.
    47. D. J. Santure, K. W. McLaughlin, J. C. Huffman, A. P. Sattelberger, Inorg. Chem. 1983, 22, 1877-1883.
    48. J. L. Eglin, L. T. Smith, R. J. Staples, Inorg. Chim. Acta 2003, 351, 217-224.
    49. F. A. Cotton, E. V. Dikarev, S. Herrero, Inorg. Chem. Commun. 1999, 2, 98-100.
    50. F. A. Cotton, E. V. Dikarev, J. Gu, S. Herrero, B. Modec, Inorg. Chem. 2000, 39, 5407-5411.
    51. F. A. Cotton, M. W. Extine, T. R. Felthouse, B. W. S. Kolthammer, D. G. Lay, J. Am. Chem. Soc. 1981, 103, 4040-4045.
    52. F. A. Cotton, T. R. Felthouse, D. G. Lay, J. Am. Chem. Soc. 1980, 102, 1431-1433.
    53. F. A. Cotton, J. L. Eglin, C. A. James, Inorg. Chem. 1993, 32, 681-686.
    54. F. A. Cotton, J. G. Jennings, A. C. Price, K. Vidyasagar, Inorg. Chem. 1990, 29, 4138-4143.
    55. T. C. Stoner, S. J. Geib, M. D. Hopkins, J. Am. Chem. Soc. 1992, 114, 4201-4204.
    56. J. A. M. Canich, F. A. Cotton, Inorg. Chim. Acta 1988, 142, 69-74.
    57. J. L. Eglin, E. J. Valente, K. R. Winfield, J. D. Zubkowski, Inorg. Chim. Acta 1996, 245, 81-85.
    58. K. D. John, V. M. Miskowski, M. A. Vance, R. F. Dallinger, L. C. Wang, S. J. Geib, M. D. Hopkins, Inorg. Chem. 1998, 37, 6858-6873.
    59. F. A. Cotton, T. R. Felthouse, Inorg. Chem. 1981, 20, 3880-3886.
    60. K. M. Carlson-Day, J. L. Eglin, C. Lin, T. Ren, E. J. Valente, J. D. Zubkowski, Inorg. Chem. 1996, 35, 4727-4732.
    61. K. M. Carlson-Day, J. L. Eglin, K. M. Huntington, R. J. Staples, Inorg. Chim. Acta 1998, 271, 49-56.
    62. F. M. D., K. C. G., S. W. S., Chem. Ber. 1989, 122, 851-855.
    63. J. L. Eglin, L. T. Smith, R. J. Staples, E. J. Valente, J. D. Zubkowski, J. Organomet. Chem. 2000, 596, 136-143.
    64. F. A. Cotton, S. A. Koch, J. Am. Chem. Soc. 1977, 99, 7371-7372.
    65. L. Giannini, E. Solari, C. Floriani, N. Re, A. Chiesi-Villa, C. Rizzoli, Inorg. Chem. 1999, 38, 1438-1445.
    66. D. M. Collins, F. A. Cotton, S. A. Koch, M. Millar, C. A. Murillo, Inorg. Chem. 1978, 17, 2017-2020.
    67. F. A. Cotton, G. N. Mott, R. R. Schrock, L. G. Sturgeoff, J. Am. Chem. Soc. 1982, 104, 6781-6782.
    68. J. L. Bolliger, M. Oberholzer, C. M. Frech, Adv. Synth. Catal. 2011, 353, 945-954.

    Chapter III
    1. A. Noor, R. Kempe, Inorg. Chim. Acta 2015, 424, 75-82.
    2. A. K. Nair, N. V. S. Harisomayajula, Y.-C. Tsai, Inorg. Chim. Acta 2015, 424, 51-62.
    3. A. K. Nair, N. V. S. Harisomayajula, Y.-C. Tsai, Dalton Trans. 2014, 43, 5618-5638.
    4. N. V. S. Harisomayajula, A. K. Nair, Y.-C. Tsai, Chem. Commun. 2014, 50, 3391-3412.
    5. A. Kaithal, B. Chatterjee, C. Gunanathan, Org. Lett. 2016, 18, 3402-3405.
    6. K. Oshima, T. Ohmura, M. Suginome, J. Am. Chem. Soc. 2012, 134, 3699-3702.
    7. P. Sehoon, C. Sukbok, Angew. Chem. Int. Ed. 2017, 56, 7720-7738.
    8. X. Fan, J. Zheng, Z. H. Li, H. Wang, J. Am. Chem. Soc. 2015, 137, 4916-4919.
    9. M. Arrowsmith, M. S. Hill, T. Hadlington, G. Kociok-Köhn, C. Weetman, Organometallics 2011, 30, 5556-5559.
    10. J. Intemann, M. Lutz, S. Harder, Organometallics 2014, 33, 5722-5729.
    11. B. Rao, C. C. Chong, R. Kinjo, J. Am. Chem. Soc. 2018, 140, 652-656.
    12. N. Pollak, C. Dölle, M. Ziegler, Biochem. J 2007, 402, 205-218.
    13. D. Mauzerall, F. H. Westheimer, J. Am. Chem. Soc. 1955, 77, 2261-2264.
    14. K. P., R. B. H., B. J., F. H., S. U., Helv. Chim. Acta 1937, 20, 55-71.
    15. D. M. Stout, A. I. Meyers, Chem. Rev. 1982, 82, 223-243.
    16. A. Hantzsch, Ber. Dtsch. Chem. Ges. 1881, 14, 1637-1638.
    17. A. Hantzsch, Justus Liebigs Ann. Chem. 1882, 215, 1-82.
    18. A. Saini, S. Kumar, J. S. Sandhu, Synth. Commun. 2007, 37, 2317-2324.
    19. M. Nasr-Esfahani, M. Moghadam, S. Tangestaninejad, V. Mirkhani, A. R. Momeni, Biorg. Med. Chem. 2006, 14, 2720-2724.
    20. M. Anniyappan, D. Muralidharan, P. T. Perumal, Tetrahedron 2002, 58, 5069-5073.
    21. S. G. Ouellet, A. M. Walji, D. W. C. Macmillan, Acc. Chem. Res. 2007, 40, 1327-1339.
    22. E. M. P. Silva, P. A. M. M. Varandas, A. M. S. Silva, Synthesis 2013, 45, 3053-3089.
    23. C. Seki, M. Hirama, N. D. M. R. Hutabarat, J. Takada, C. Suttibut, H. Takahashi, T. Takaguchi, Y. Kohari, H. Nakano, K. Uwai, N. Takano, M. Yasui, Y. Okuyama, M. Takeshita, H. Matsuyama, Tetrahedron 2012, 68, 1774-1781.
    24. D.-H. Wang, K. M. Engle, B.-F. Shi, J.-Q. Yu, Science 2010, 327, 315-319.
    25. X. Chen, K. M. Engle, D.-H. Wang, J.-Q. Yu, Angew. Chem. Int. Ed. 2009, 48, 5094-5115.
    26. O. Daugulis, H.-Q. Do, D. Shabashov, Acc. Chem. Res. 2009, 42, 1074-1086.
    27. L. Ackermann, R. Vicente, A. R. Kapdi, Angew. Chem. Int. Ed. 2009, 48, 9792-9826.
    28. T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147-1169.
    29. G. P. Chiusoli, M. Catellani, M. Costa, E. Motti, N. Della Ca’, G. Maestri, Coord. Chem. Rev. 2010, 254, 456-469.
    30. G. P. McGlacken, L. M. Bateman, Chem. Soc. Rev. 2009, 38, 2447-2464.
    31. D. Alberico, M. E. Scott, M. Lautens, Chem. Rev. 2007, 107, 174-238.
    32. K. Godula, D. Sames, Science 2006, 312, 67-72.
    33. M. Albrecht, Chem. Rev. 2010, 110, 576-623.
    34. D. A. Colby, R. G. Bergman, J. A. Ellman, Chem. Rev. 2010, 110, 624-655.
    35. T. Satoh, M. Miura, Chem. Lett. 2007, 36, 200-205.
    36. J. Yamaguchi, A. D. Yamaguchi, K. Itami, Angew. Chem. Int. Ed. 2012, 51, 8960-9009.
    37. N. Kuhl, M. N. Hopkinson, J. Wencel-Delord, F. Glorius, Angew. Chem. Int. Ed. 2012, 51, 10236-10254.
    38. S. A. Girard, T. Knauber, C.-J. Li, Angew. Chem. Int. Ed. 2014, 53, 74-100.
    39. L. Ackermann, Chem. Rev. 2011, 111, 1315-1345.
    40. L. Ackermann, Acc. Chem. Res. 2014, 47, 281-295.
    41. C.-J. Li, Acc. Chem. Res. 2009, 42, 335-344.
    42. E. J. Moore, W. R. Pretzer, T. J. O'Connell, J. Harris, L. LaBounty, L. Chou, S. S. Grimmer, J. Am. Chem. Soc. 1992, 114, 5888-5890.
    43. M. Murakami, S. Hori, J. Am. Chem. Soc. 2003, 125, 4720-4721.
    44. J. C. Lewis, R. G. Bergman, J. A. Ellman, J. Am. Chem. Soc. 2007, 129, 5332-5333.
    45. T. Kawashima, T. Takao, H. Suzuki, J. Am. Chem. Soc. 2007, 129, 11006-11007.
    46. R. F. Jordan, D. F. Taylor, J. Am. Chem. Soc. 1989, 111, 778-779.
    47. R. Grigg, V. Savic, Tetrahedron Lett. 1997, 38, 5737-5740.
    48. L.-C. Campeau, S. Rousseaux, K. Fagnou, J. Am. Chem. Soc. 2005, 127, 18020-18021.
    49. J.-P. Leclerc, K. Fagnou, Angew. Chem. Int. Ed. 2006, 45, 7781-7786.
    50. K. S. Kanyiva, Y. Nakao, T. Hiyama, Angew. Chem. Int. Ed. 2007, 46, 8872-8874.
    51. Y. Nakao, K. S. Kanyiva, T. Hiyama, J. Am. Chem. Soc. 2008, 130, 2448-2449.
    52. J. F. Normant, A. Alexakis, Synthesis 1981, 1981, 841-870.
    53. E. Negishi, Acc. Chem. Res. 1987, 20, 65-72.
    54. A. G. Fallis, P. Forgione, Tetrahedron 2001, 57, 5899-5913.
    55. E. Negishi, and T. Novak, ‘C−C bond formation (Part 1) by addition reactions: through carbometallation mediated by group 4-7 metals,’ in Comprehensive Organometallic Chemistry III (Eds. R. H. Crabtree and D. M. P. Mingos), Vol. 10, Elsevier, Oxford 2007, 251.
    56. I. Marek, and A. Basheer, ‘Carbometalation of carbon-carbon double bonds,’ in Science of Synthesis (Eds. J. G. De Vries, G. A. Molander and P. A. Evans), Vol. 1, Georg Thieme Verlag, Stuttgart 2011, 325.
    57. A. Ding, ‘Carbometalation and heterometalation reactions of alkenes, alkynes, and allenes,’ in Comprehensive Organic Synthesis, 2nd ed., (Eds. P. Knochel and G. A. Molander), Vol. 4, Elsevier, Oxford 2014, 891.
    58. S. A. Rao, P. Knochel, J. Am. Chem. Soc. 1991, 113, 5735-5741.
    59. K. Soai, S. Niwa, Chem. Rev. 1992, 92, 833-856.
    60. P. Knochel, R. D. Singer, Chem. Rev. 1993, 93, 2117-2188.
    61. M. Nakamura, A. Hirai, E. Nakamura, J. Am. Chem. Soc. 2000, 122, 978-979.
    62. B. Gourdet, M. E. Rudkin, C. A. Watts, H. W. Lam, J. Org. Chem. 2009, 74, 7849-7858.
    63. V. Tarwade, X. Liu, N. Yan, J. M. Fox, J. Am. Chem. Soc. 2009, 131, 5382-5383.
    64. Y. Yoshida, K. Murakami, H. Yorimitsu, K. Oshima, J. Am. Chem. Soc. 2010, 132, 8878-8879.
    65. M. Laurin, M. Albrecht, K. Paul, Chem. Eur. J. 2011, 17, 2948-2956.
    66. S. Thomas, K. Paul, Angew. Chem. Int. Ed. 1997, 36, 93-95.
    67. T. Stüdemann, M. Ibrahim-Ouali, P. Knochel, Tetrahedron 1998, 54, 1299-1316.
    68. H. Baur Werner, A. Bieniok, D. Shannon Robert, E. Prince, in Zeitschrift für Kristallographie - Crystalline Materials, Vol. 187, 1989, p. 253.
    69. K. Murakami, Yorimitsu, H. Beilstein J. Org. Chem. 2013, 9, 278-302. doi:210.3762/bjoc.3769.3734.
    70. W. Junliang, Y. Naohiko, Angew. Chem. Int. Ed. 2016, 55, 336-340.
    71. W. Hieber, Teller U. Z. Anorg. Allg. Chem. 1942, 249, 43-57.
    72. J. M. Burlitch, Chem. Commun. (London) 1968, 887-888.
    73. J. M. Burlitch, A. Ferrari, Inorg. Chem. 1970, 9, 563-569.
    74. B. R. Francis, M. L. H. Green, T. Luong-thi, G. A. Moser, J. Chem. Soc., Dalton Trans. 1976, 1339-1345.
    75. J. Klaus, S. Ludwig, K. Carl, T. Yi‐Hung, Angew. Chem. 1979, 91, 590-591.
    76. T. Bollermann, C. Gemel, R. A. Fischer, Coord. Chem. Rev. 2012, 256, 537-555.
    77. D. E. Crotty, T. J. Anderson, M. D. Glick, J. P. Oliver, Inorg. Chem. 1977, 16, 2346-2350.
    78. P. H. M. Budzelaar, J. Boersma, G. J. M. Van der Kerk, A. L. Spek, A. J. M. Duisenberg, Inorg. Chem. 1982, 21, 3777-3780.
    79. M. D. Fryzuk, D. H. McConville, S. J. Rettig, Organometallics 1993, 12, 2152-2161.
    80. R. Tan, D. Song, Organometallics 2011, 30, 1637-1645.
    81. S. Kundu, W. W. Brennessel, W. D. Jones, Organometallics 2011, 30, 5147-5154.
    82. M. R. Grochowski, T. Li, W. W. Brennessel, W. D. Jones, J. Am. Chem. Soc. 2010, 132, 12412-12421.
    83. T. Schaub, M. Backes, O. Plietzsch, U. Radius, Dalton Trans. 2009, 7071-7079.
    84. M. R. Grochowski, W. W. Brennessel, W. D. Jones, Organometallics 2009, 28, 2661-2667.
    85. J. Torres-Nieto, W. W. Brennessel, W. D. Jones, J. J. García, J. Am. Chem. Soc. 2009, 131, 4120-4126.
    86. T. A. Ateşin, A. Ç. Ateşin, K. Skugrud, W. D. Jones, Inorg. Chem. 2008, 47, 4596-4604.
    87. K. Iwasa, H. Seino, Y. Mizobe, J. Organomet. Chem. 2008, 693, 3197-3200.
    88. M. Shibue, M. Hirotsu, T. Nishioka, I. Kinoshita, Organometallics 2008, 27, 4475-4483.
    89. D. Shimizu, N. Takeda, N. Tokitoh, J. Organomet. Chem. 2007, 692, 2716-2728.
    90. T. Schaub, M. Backes, U. Radius, Chem. Commun. 2007, 2037-2039.
    91. D. Shimizu, N. Takeda, N. Tokitoh, Chem. Commun. 2006, 177-179.
    92. L. A. Goj, M. Lail, K. A. Pittard, K. C. Riley, T. B. Gunnoe, J. L. Petersen, Chem. Commun. 2006, 982-984.
    93. J. A. Cabeza, I. del Río, M. G. Sánchez-Vega, M. Suárez, Organometallics 2006, 25, 1831-1834.
    94. N. Ainara, N. Fernando, G. D. Pilar, L. Agustí, M. B. Rubén, Eur. J. Inorg. Chem. 2007, 2007, 5707-5719.
    95. K. Yu, H. Li, E. J. Watson, K. L. Virkaitis, G. B. Carpenter, D. A. Sweigart, Organometallics 2001, 20, 3550-3559.
    96. H. Li, G. B. Carpenter, D. A. Sweigart, Organometallics 2000, 19, 1823-1825.
    97. A. Arévalo, S. Bernès, J. J. García, P. M. Maitlis, Organometallics 1999, 18, 1680-1685.
    98. C. A. Dullaghan, X. Zhang, D. L. Greene, G. B. Carpenter, D. A. Sweigart, C. Camiletti, E. Rajaseelan, Organometallics 1998, 17, 3316-3322.
    99. J. J. Garcia, B. E. Mann, H. Adams, N. A. Bailey, P. M. Maitlis, J. Am. Chem. Soc. 1995, 117, 2179-2186.
    100. J. J. Garcia, P. M. Maitlis, J. Am. Chem. Soc. 1993, 115, 12200-12201.
    101. T. Kato, H. Kuniyasu, T. Kajiura, Y. Minami, A. Ohtaka, M. Kinomoto, J. Terao, H. Kurosawa, N. Kambe, Chem. Commun. 2006, 868-870.
    102. Y. Minami, T. Kato, H. Kuniyasu, J. Terao, N. Kambe, Organometallics 2006, 25, 2949-2959.
    103. H. Kuniyasu, A. Ohtaka, T. Nakazono, M. Kinomoto, H. Kurosawa, J. Am. Chem. Soc. 2000, 122, 2375-2376.
    104. P. M. Boorman, X. Gao, M. Parvez, J. Chem. Soc., Dalton Trans. 1992, 25-31.
    105. N. Norio, F. Noriyuki, T. Tomoyuki, I. Akihiko, Angew. Chem. Int. Ed. 2010, 49, 5784-5787.
    106. H. Mikami, E. Toyoda, N. Nakata, A. Ishii, J. Sulfur Chem. 2013, 34, 661-670.

    Chapter IV
    1. G. J. Pyrka, M. El-Mekki, A. A. Pinkerton, J. Chem. Soc. Chem. Commun. 1991, 84-85.
    2. L.-P. Wu, P. Field, T. Morrissey, C. Murphy, P. Nagle, B. Hathaway, C. Simmons, P. Thornton, J. Chem. Soc. Dalton Trans. 1990, 3835-3840.
    3. S. Aduldecha, B. Hathaway, J. Chem. Soc. Dalton Trans. 1991, 993-998.
    4. K. Mashima, Bull. Chem. Soc. Jpn. 2010, 83, 299-312.
    5. J. F. Berry, Struct. Bonding (Berlin) 2010, 136, 1.
    6. I. Po-Chun Liu, W.-Z. Wang, S.-M. Peng, Chem. Commun. 2009, 4323-4331.
    7. S.-A. Hua, Y.-C. Tsai, S.-M. Peng, J. Chin. Chem. Soc. 2014, 61, 9-26.
    8. V. P. Georgiev, P. J. Mohan, D. DeBrincat, J. E. McGrady, Coord. Chem. Rev. 2013, 257, 290-298.
    9. J. F. Berry, In Multiple Bonds between Metal Atoms, 3rd ed. (Eds.: F. A. Cotton, C. A. Murillo, Walton, R. A.), Springer, New York, 2005; pp. 669-706.
    10. C.-H. Chien, J.-C. Chang, C.-Y. Yeh, G.-H. Lee, J.-M. Fang, S.-M. Peng, Dalton Trans. 2006, 2106-2113.
    11. R. H. Ismayilov, W.-Z. Wang, R.-R. Wang, C.-Y. Yeh, G.-H. Lee, S.-M. Peng, Chem. Commun. 2007, 1121-1123.
    12. K.-N. Shih, M.-J. Huang, H.-C. Lu, M.-D. Fu, C.-K. Kuo, G.-C. Huang, G.-H. Lee, C.-H. Chen, S.-M. Peng, Chem. Commun. 2010, 46, 1338-1340.
    13. M.-C. Cheng, C.-L. Mai, C.-Y. Yeh, G.-H. Lee, S.-M. Peng, Chem. Commun. 2013, 49, 7938-7940.
    14. C.-S. Tsai, I. P.-C. Liu, F.-W. Tien, G.-H. Lee, C.-Y. Yeh, C.-H. Chen, S.-M. Peng, Inorg. Chem. Commun. 2013, 38, 152-155.
    15. T. Murahashi, K. Shirato, A. Fukushima, K. Takase, T. Suenobu, S. Fukuzumi, S. Ogoshi, H. Kurosawa, Nat. Chem. 2012, 4, 52-58.
    16. P. J. Mohan, V. P. Georgiev, J. E. McGrady, Chem. Sci. 2012, 3, 1319-1329.
    17. K. Pal, K. Nakao, K. Mashima, Eur. J. Inorg. Chem. 2010, 2010, 5668-5674.
    18. M. P. del Río, J. A. López, M. A. Ciriano, C. Tejel, Chem. Eur. J. 2013, 19, 4707-4711.
    19. M.-J. Huang, S.-A. Hua, M.-D. Fu, G.-C. Huang, C. Yin, C.-H. Ko, C.-K. Kuo, C.-H. Hsu, G.-H. Lee, K.-Y. Ho, C.-H. Wang, Y.-W. Yang, I. C. Chen, S.-M. Peng, C.-h. Chen, Chem. Eur. J. 2014, 20, 4526-4531.
    20. E. Goto, R. A. Begum, A. Hosokawa, C. Yamamoto, B. Kure, T. Nakajima, T. Tanase, Organometallics 2012, 31, 8482-8497.
    21. E. Goto, R. A. Begum, C. Ueno, A. Hosokawa, C. Yamamoto, K. Nakamae, B. Kure, T. Nakajima, T. Kajiwara, T. Tanase, Organometallics 2014, 33, 1893-1904.
    22. S.-A. Hua, G.-C. Huang, I. P.-C. Liu, J.-H. Kuo, C.-H. Jiang, C.-L. Chiu, C.-Y. Yeh, G.-H. Lee, S.-M. Peng, Chem. Commun. 2010, 46, 5018-5020.
    23. J.-H. Kuo, T.-B. Tsao, G.-H. Lee, H.-W. Lee, C.-Y. Yeh, S.-M. Peng, Eur. J. Inorg. Chem. 2011, 2011, 2025-2028.
    24. R. H. Ismayilov, W.-Z. Wang, G.-H. Lee, C.-Y. Yeh, S.-A. Hua, Y. Song, M.-M. Rohmer, M. Bénard, S.-M. Peng, Angew. Chem. Int. Ed. 2011, 50, 2045-2048.
    25. K. Uemura, T. Kanbara, M. Ebihara, Inorg. Chem. 2014, 53, 4621-4628.
    26. K. Nakamae, Y. Takemura, B. Kure, T. Nakajima, Y. Kitagawa, T. Tanase, Angew. Chem. Int. Ed. 2015, 54, 1016-1021.
    27. S. Horiuchi, Y. Tachibana, M. Yamashita, K. Yamamoto, K. Masai, K. Takase, T. Matsutani, S. Kawamata, Y. Kurashige, T. Yanai, T. Murahashi, Nat. Commun. 2015, 6, 6742.
    28. P.-J. Chen, M. Sigrist, E.-C. Horng, G.-M. Lin, G.-H. Lee, C.-h. Chen, S.-M. Peng, Chem. Commun. 2017, 53, 4673-4676.
    29. T. Tanase, K. Morita, R. Otaki, K. Yamamoto, Y. Kaneko, K. Nakamae, B. Kure, T. Nakajima, Chem. Eur. J. 2017, 23, 524-528.
    30. C.-Y. W. Yeh, C.-C.;Chen, C.-H.; Peng, S.-M., In Redox Systems under Nano-Space Control (Ed.: T. Hirao), Springer, Berlin, 2006, pp. 85-117.
    31. J. F. Berry, F. A. Cotton, P. Lei, T. Lu, C. A. Murillo, Inorg. Chem. 2003, 42, 3534-3539 and references therein.
    32. V. W.-W. Yam, K. M.-C. Wong, Top. Curr. Chem. 2005, 257, 1-32.
    33. C.-H. Chien, J.-C. Chang, C.-Y. Yeh, G.-H. Lee, J.-M. Fang, Y. Song, S.-M. Peng, Dalton Trans. 2006, 3249-3256.
    34. P. Pyykko, J. P. Desclaux, Acc. Chem. Res. 1979, 12, 276-281.
    35. H. Schmidbaur, A. Schier, Chem. Soc. Rev. 2012, 41, 370-412.
    36. F. Scherbaum, A. Grohmann, B. Huber, C. Krüger, H. Schmidbaur, Angew. Chem. Int. Ed. 1988, 27, 1544-1546.
    37. H. Schmidbaur, W. Graf, G. Müller, Angew. Chem. Int. Ed. 1988, 27, 417-419.
    38. K. M. Merz, R. Hoffmann, Inorg. Chem. 1988, 27, 2120-2127.
    39. F. A. Cotton, C. A. Murillo, R. A. Walton, Multiple Bond Between Metal Atoms, 3rd ed., Springer, Berlin, 2005.
    40. M. Vitale, P. C. Ford, Coord. Chem. Rev. 2001, 219, 3-16.
    41. V. Wing-Wah Yam, K. Kam-Wing Lo, Chem. Soc. Rev. 1999, 28, 323-334.
    42. P. C. Ford, E. Cariati, J. Bourassa, Chem. Rev. 1999, 99, 3625-3648.
    43. V. W.-W. Yam, K. Kam-Wing Lo, K. Man-Chung Wong, J. Organomet. Chem. 1999, 578, 3-30.
    44. V. Wing-Wah Yam, K. Kam-Wing Lo, W. Kit-Mai Fung, C.-R. Wang, Coord. Chem. Rev. 1998, 171, 17-41.
    45. P. C. Ford, A. Vogler, Acc. Chem. Res. 1993, 26, 220-226.
    46. S. Naik, J. T. Mague, M. S. Balakrishna, Inorg. Chem. 2014, 53, 3864-3873.
    47. S. Perruchas, C. Tard, X. F. Le Goff, A. Fargues, A. Garcia, S. Kahlal, J.-Y. Saillard, T. Gacoin, J.-P. Boilot, Inorg. Chem. 2011, 50, 10682-10692.
    48. S. Perruchas, X. F. Le Goff, S. Maron, I. Maurin, F. Guillen, A. Garcia, T. Gacoin, J.-P. Boilot, J. Am. Chem. Soc. 2010, 132, 10967-10969.
    49. M. Knorr, A. Pam, A. Khatyr, C. Strohmann, M. M. Kubicki, Y. Rousselin, S. M. Aly, D. Fortin, P. D. Harvey, Inorg. Chem. 2010, 49, 5834-5844.
    50. T. H. Kim, Y. W. Shin, J. H. Jung, J. S. Kim, J. Kim, Angew. Chem. Int. Ed. 2008, 47, 685-688.
    51. W.-F. Fu, X. Gan, C.-M. Che, Q.-Y. Cao, Z.-Y. Zhou, N. N.-Y. Zhu, Chem. Eur. J. 2004, 10, 2228-2236.
    52. C.-M. Che, Z. Mao, V. M. Miskowski, M.-C. Tse, C.-K. Chan, K.-K. Cheung, D. L. Phillips, K.-H. Leung, Angew. Chem. Int. Ed. 2000, 39, 4084-4088.
    53. D. M. Zink, T. Baumann, J. Friedrichs, M. Nieger, S. Bräse, Inorg. Chem. 2013, 52, 13509-13520.
    54. S.-Z. Zhan, M. Li, X.-P. Zhou, J. Ni, X.-C. Huang, D. Li, Inorg. Chem. 2011, 50, 8879-8892.
    55. J. C. Deaton, S. C. Switalski, D. Y. Kondakov, R. H. Young, T. D. Pawlik, D. J. Giesen, S. B. Harkins, A. J. M. Miller, S. F. Mickenberg, J. C. Peters, J. Am. Chem. Soc. 2010, 132, 9499-9508.
    56. Y. Chen, J.-S. Chen, X. Gan, W.-F. Fu, Inorg. Chim. Acta 2009, 362, 2492-2498.
    57. S. B. Harkins, N. P. Mankad, A. J. M. Miller, R. K. Szilagyi, J. C. Peters, J. Am. Chem. Soc. 2008, 130, 3478-3485.
    58. Y.-G. Ma, W.-H. Chan, X.-M. Zhou, C.-M. Che, New J. Chem. 1999, 23, 263-265.
    59. W.-H. Chan, Z.-Z. Zhang, T. C. W. Mak, C.-M. Che, J. Organomet. Chem. 1998, 556, 169-172.
    60. R. I. Papasergio, C. L. Raston, A. H. White, J. Chem. Soc. Dalton Trans. 1987, 3085-3091.
    61. J. Beck, J. Strähle, Angew. Chem. Int. Ed. 1985, 24, 409-410.
    62. A. Toth, C. Floriani, A. Chiesi-Villa, C. Guastini, Inorg. Chem. 1987, 26, 236-241.
    63. M.-S. Tsai, S.-M. Peng, J. Chem. Soc. Chem. Commun. 1991, 514-515.
    64. X. He, K. Ruhlandt-Senge, P. P. Power, S. H. Bertz, J. Am. Chem. Soc. 1994, 116, 6963-6964.
    65. R. Clérac, F. A. Cotton, L. M. Daniels, J. Gu, C. A. Murillo, H.-C. Zhou, Inorg. Chem. 2000, 39, 4488-4493.
    66. P. Ai, A. A. Danopoulos, P. Braunstein, K. Y. Monakhov, Chem. Commun. 2014, 50, 103-105.
    67. O. Rivada‐Wheelaghan, S. L. Aristizábal, J. López‐Serrano, R. R. Fayzullin, J. R. Khusnutdinova, Angew. Chem. Int. Ed. 2017, 56, 16267-16271.
    68. C. Kramer, S. Leingang, O. Hubner, E. Kaifer, H. Wadepohl, H.-J. Himmel, Dalton Trans. 2016, 45, 16966-16983.
    69. J.-F. Liu, X. Min, J.-Y. Lv, F.-X. Pan, Q.-J. Pan, Z.-M. Sun, Inorg. Chem. 2014, 53, 11068-11074.
    70. B. Liu, S. Pan, B. Liu, W. Chen, Inorg. Chem. 2014, 53, 10485-10497.
    71. N. Zhao, J. Zhang, Y. Yang, H. Zhu, Y. Li, G. Fu, Inorg. Chem. 2012, 51, 8710-8718.
    72. Y. Chen, J.-L. Li, G. S. M. Tong, W. Lu, W.-F. Fu, S.-W. Lai, C.-M. Che, Chem. Sci. 2011, 2, 1509-1514.
    73. Z.-K. Chan, C.-H. Lin, C.-C. Wang, J.-D. Chen, J.-C. Wang, C. W. Liu, Dalton Trans. 2008, 2183-2189.
    74. Z.-K. Chan, Y.-Y. Wu, J.-D. Chen, C.-Y. Yeh, C.-C. Wang, Y.-F. Tsai, J.-C. Wang, Dalton Trans. 2005, 985-990.
    75. M. Stollenz, J. E. Raymond, L. M. Pérez, J. Wiederkehr, N. Bhuvanesh, Chem. Eur. J. 2016, 22, 2396-2405.
    76. F. A. Cotton, X. Feng, D. J. Timmons, Inorg. Chem. 1998, 37, 4066-4069.
    77. F. A. Cotton, X. Feng, M. Matusz, R. Poli, J. Am. Chem. Soc. 1988, 110, 7077-7083.
    78. M. A. Carvajal, S. Alvarez, J. J. Novoa, Chem. Eur. J. 2004, 10, 2117-2132.
    79. K. Singh, J. R. Long, P. Stavropoulos, J. Am. Chem. Soc. 1997, 119, 2942-2943.
    80. X.-M. Zhang, M.-L. Tong, M.-L. Gong, H.-K. Lee, L. Luo, K.-F. Li, Y.-X. Tong, X.-M. Chen, Chem. Eur. J. 2002, 8, 3187-3194.
    81. J.-P. Zhang, Y.-B. Wang, X.-C. Huang, Y.-Y. Lin, X.-M. Chen, Chem. Eur. J. 2005, 11, 552-561.
    82. G. Boche, F. Bosold, M. Marsch, K. Harms, Angew. Chem. Int. Ed. 1998, 37, 1684-1686.
    83. G. Margraf, J. W. Bats, M. Bolte, H.-W. Lerner, M. Wagner, Chem. Commun. 2003, 956-957.
    84. R. D. Köhn, G. Seifert, Z. Pan, M. F. Mahon, G. Kociok-Köhn, Angew. Chem. Int. Ed. 2003, 42, 793-796.
    85. A. Sundararaman, L. N. Zakharov, A. L. Rheingold, F. Jakle, Chem. Commun. 2005, 1708-1710.
    86. S. H. Oakley, M. P. Coles, P. B. Hitchcock, Inorg. Chem. 2004, 43, 5168-5172.
    87. S.-L. Zheng, M. Messerschmidt, P. Coppens, Angew. Chem. Int. Ed. 2005, 44, 4614-4617.
    88. G. M. Chiarella, D. Y. Melgarejo, A. Rozanski, P. Hempte, L. M. Perez, C. Reber, J. P. Fackler Jr, Chem. Commun. 2010, 46, 136-138.
    89. V. W.-W. Yam, Acc. Chem. Res. 2002, 35, 555-563.
    90. M. Hissler, J. E. McGarrah, W. B. Connick, D. K. Geiger, S. D. Cummings, R. Eisenberg, Coord. Chem. Rev. 2000, 208, 115-137.
    91. H. Lang, K. Köhler, S. Blau, Coord. Chem. Rev. 1995, 143, 113-168.
    92. S. K. Hurst, T. Ren, J. Organomet. Chem. 2003, 670, 188-197.
    93. I. Ara, J. R. Berenguer, E. Eguizábal, J. Forniés, J. Gómez, E. Lalinde, J. Organomet. Chem. 2003, 670, 221-234.
    94. Q.-H. Wei, L.-Y. Zhang, L.-X. Shi, Z.-N. Chen, Inorg. Chem. Commun. 2004, 7, 286-288.
    95. Q.-H. Wei, G.-Q. Yin, L.-Y. Zhang, L.-X. Shi, Z.-W. Mao, Z.-N. Chen, Inorg. Chem. 2004, 43, 3484-3491.
    96. Q.-H. Wei, G.-Q. Yin, L.-Y. Zhang, Z.-N. Chen, Organometallics 2006, 25, 4941-4944.
    97. G. M. Chiarella, D. Y. Melgarejo, J. P. Fackler, J. Cluster Sci. 2012, 23, 823-838.
    98. P.-H. Ho, M.-S. Tsai, G.-H. Lee, C.-M. Che, S.-M. Peng, J. Chin. Chem. Soc. 2013, 60, 813-822.
    99. T. Tsuda, T. Hashimoto, T. Saegusa, J. Am. Chem. Soc. 1972, 94, 658-659.
    100. C. Xiao‐Yong, L. Kam‐Hung, W. Juan‐Yu, H. Jie‐Sheng, C. Chi‐Ming, Angew. Chem. Int. Ed. 2016, 55, 10312-10316.
    101. S. Markus, S. Daniel, B. Frank, G. Jens, S. Hartmut, G. Hansjörg, Z. Anorg. Allg. Chem. 2005, 631, 2770-2774.
    102. A. Carvajal, X.-Y. Liu, P. Alemany, J. J. Novoa, S. Alvarez, Int. J. Quantum Chem 2002, 86, 100-105.
    103. Y. Fujie, N. Hanaki, Jpn. Kokai Tokyo Koho 2004, JP 2004175789 A 2020040624.
    104. L. K., Johnson, 2000, PCT Int. Appl., 2000066638.
    105. R. E., Murray, 2012 U.S. Pat. Appl. Publ., 20120271018.
    106. G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, Organometallics 2010, 29, 2176-2179.
    107. R. B. Gaussian 09, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
    108. A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652.
    109. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785-789.
    110. O. V. Sizova, L. V. Skripnikov, A. Y. Sokolov, THEOCHEM 2008, 870, 1-9.

    QR CODE