簡易檢索 / 詳目顯示

研究生: 朱葦翰
Chu, Wei-Han
論文名稱: 多球體偵檢器度量醫用直線加速器環境中子能譜與劑量研究
Neutron Spectra and Doses Study around a Medical Linear Accelerator employing Bonner Sphere Spectrometers
指導教授: 董傳中
Tung, Chuan-Jong
莊克士
Chuang, Keh-Shih
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 115
中文關鍵詞: 多球體偵檢器光中子能譜光核反應
外文關鍵詞: Bonner sphere spectrometer, photoneutron spectrum, photonuclear reaction
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 醫用直線加速器(linear accelerator,LINAC)為現今放射腫瘤科最主要治療癌症之技術,對於深部的病灶常予以高能量光子射束照射,然而,當光子能量超過6.2 MeV時,光子會與治療機頭(treatment head)內高原子序數之物質作用產生光中子(photoneutron),由於中子屬於強穿輻射(strongly penetrating radiation),存在於機頭內的光中子會直接穿透屏蔽光子之物質滲漏至加速器的環境中,藉由多次碰撞(multiple collisions)及散射,分佈於治療室(treatment room)與迷道(maze)中,造成其環境周遭不必要之中子劑量(undesirable neutron dose);本研究採用多球體偵檢器搭配計算中子能譜之程式用以計算照野外(out-off field)之中子通量,並轉換成中子劑量予以評估,同時也探討影響中子能譜變化之因子。建立此實驗技術,未來可提供輻射防護與臨床之參考,亦為保健物理領域中盡一份心力。


    摘要 iv 誌謝 v 圖目錄 vi 表目錄 x 一.緒論 1 1.1 前言 1 1.2 中子發現與來源 3 1.3 中子的加權因數 7 二.醫用直線加速器之中子能譜、劑量 12 2.1 光中子產生機制 12 2.2 光中子能譜 15 2.2.1 Evaporation neutron 16 2.2.2 Knock-on neutron 17 2.3 環境之中子能譜 20 2.3.1滲漏輻射 21 2.3.2散射輻射 22 2.3.3 Room-return效應 23 2.4 中子能譜劑量學 25 2.4.1 基本物理量 25 2.4.1.1 粒子通量 25 2.4.1.2 劑量 26 2.4.1.2.1 中子周圍等效劑量 27 2.4.1.2.2 中子有效劑量 29 2.4.1.3 平均能量 32 2.4.2 能譜表示法 32 三.實驗設備 34 3.1 多球體偵檢器 34 3.1.1 主動式、被動式中子偵檢器 34 3.1.2 多球體作用原理 35 3.2 熱發光劑量計 38 3.2.1 熱發光劑量計原理 38 3.2.2熱發光劑量計迴火條件及計讀儀 42 3.3 光子響應 46 3.3.1 137Cs光子照射場 46 3.3.2 光子再現性測試 48 3.3.3 光子劑量校正 49 3.4 中子響應 49 3.4.1 中子校正場 49 3.4.2 影錐法 53 3.4.3 中子劑量校正 58 3.5 計算中子能譜軟體 59 3.5.1 計算原理 59 3.5.2 MAXED code 61 3.5.3 檔案輸入 65 3.5.3.1 實驗數據 65 3.5.3.2 中子響應函數 66 3.5.3.3 預設能譜 68 3.6 侖道假體與固定多球體偵檢器之支架 69 3.7 醫用直線加速器環境中子能譜量測 71 3.7.1 測量位置 72 3.7.2 治療機頭的角度 73 3.7.3 濾器 74 3.7.4 照野 77 四.結果與討論 79 4.1 光子響應 79 4.1.1光子再現性 79 4.1.2光子劑量校正 80 4.2 252Cf中子能譜及校正因子 81 4.3 測量位置 84 4.4 治療機頭的角度 88 4.5 濾器 89 4.5.1 壓克力板 91 4.5.2 鉛、鋁板 93 4.6 照野 98 五.結論與未來展望 103 六.參考資料 107

    1.ICRP, The 2007 Recommendations of the International
    Commission on Radiological Protection. 2007: Elsevier.
    2.Chadwick, J., Possible existence of a neutron. Nature,
    1932. 129(3252): p. 312.
    3.Yao, W., Review of particle physics. Journal of Physics
    G: Nuclear and Particle Physics, 2006. 33: p. 1.
    4.陳俊良, 中子度量原理與實務. 2008.
    5.Protection, I.C.o.R., Recommendations of the
    International Commission on Radiological Protection.
    1991: Pergamon Press Oxford.
    6.ICRP, Conversion Coefficients for Use in Radiological
    Protection against External Radiation 1996: Elsevier.
    7.Valentin, J., The 2007 Recommendations of the
    International Commission on Radiological Protection.
    2007: Elsevier.
    8.Morgan, H., NCRP Report 151 Structural shielding design
    and evaluation for megavoltage x-and gamma-ray
    radiotherapy facilities. Journal of Radiological
    Protection, 2006. 26: p. 349.
    9.Bedogni, R., et al., Determination and validation of a
    response matrix for a passive Bonner sphere spectrometer
    based on gold foils. Radiation measurements, 2008. 43(2-
    6): p. 1104-1107.
    10.Axton, E. and A. Bardell, Neutron production from
    electron accelerators used for medical purposes. Physics
    in Medicine and Biology, 1972. 17: p. 293-298.
    11.Deye, J. and F. Young, Neutron production from a 10 MV
    medical line. Physics in Medicine and Biology, 1977. 22:
    p. 90-94.
    12.Kry, S., et al., A Monte Carlo model for out-of-field
    dose calculation from high-energy photon therapy.
    Medical physics, 2007. 34: p. 3489.
    13.Kry, S., et al., Neutron spectra and dose equivalents
    calculated in tissue for high-energy radiation therapy.
    Medical physics, 2009. 36: p. 1244.
    14.Awotwi-Pratt, J. and N. Spyrou, Measurement of
    photoneutrons in the output of 15 MV Varian Clinac 2100C
    LINAC using bubble detectors. Journal of Radioanalytical
    and Nuclear Chemistry, 2007. 271(3): p. 679-684.
    15.Esposito, A., et al., Determination of the neutron
    spectra around an 18 MV medical LINAC with a passive
    Bonner sphere spectrometer based on gold foils and TLD
    pairs. Radiation measurements, 2008. 43(2-6): p. 1038-
    1043.
    16.Barquero, R., et al., Neutron spectra and dosimetric
    features around an 18 MV linac accelerator. Health
    physics, 2005. 88(1): p. 48.
    17.Holeman, G., et al., Neutron spectral measurements in an
    intense photon field associated with a high-energy x-ray
    radiotherapy machine. Medical physics, 1977. 4: p. 508.
    18.Zabihzadeh, M., et al., Monte Carlo estimation of
    photoneutrons contamination from high-energy X-ray
    medical accelerators in treatment room and maze: a
    simplified model. Radiation Protection Dosimetry, 2009.
    135(1): p. 21.
    19.Kim, H., et al., Evaluation of the photoneutron field
    produced in a medical linear accelerator. Radiation
    Protection Dosimetry, 2007. 123(3): p. 323.
    20.Followill, D., et al., Neutron source strength
    measurements for Varian, Siemens, Elekta, and General
    Electric linear accelerators. Journal of Applied
    Clinical Medical Physics, 2003. 4(3): p. 189.
    21.Vega-Carrillo, H., et al., Neutron spectrum and doses in
    a 18 MV LINAC. Journal of Radioanalytical and Nuclear
    Chemistry, 2010. 283(1): p. 261-265.
    22.Howell, R., et al., Investigation of secondary neutron
    dose for 18 MV dynamic MLC IMRT delivery. Medical
    physics, 2005. 32: p. 786.
    23.Ma, A., et al., Monte Carlo study of photoneutron
    production in the Varian Clinac 2100C linac. Journal of
    Radioanalytical and Nuclear Chemistry, 2008. 276(1): p.
    119-123.
    24.Vega-Carrillo, H., et al., H*(10) and neutron spectra
    around linacs. Journal of Radioanalytical and Nuclear
    Chemistry: p. 1-4.
    25.Barquero, R. and R. Mendez, Thermoluminescence
    measurements of neutron dose around a medical linac.
    Radiation Protection Dosimetry, 2002. 101(1): p. 493.
    26.Saeed, M., et al. Doses to Patients from Photo-Neutrons
    Emitted in a Medical Linear Accelerator: Springer.
    27.Chadwick, M., et al., Handbook of photonuclear data for
    applications: Cross sections and spectra. IAEA TECH-DOC,
    2000. 1178.
    28.Alghamdi, A., A. Ma, and N. Spyrou, Calculation of the
    photonuclear yield using an anthropomorphic phantom.
    Journal of Radioanalytical and Nuclear Chemistry, 2007.
    271(3): p. 639-642.
    29.Tosi, G., et al., Neutron measurements around medical
    electron accelerators by active and passive detection
    techniques. Medical physics, 1991. 18: p. 54.
    30.Vega-Carrillo, H., et al., Study of room-return
    neutrons. Radiation measurements, 2007. 42(3): p. 413-
    419.
    31.Vega-Carrillo, H.R. Neutron Spectra In A 15 MV LINAC. in
    IX MEXICAN SYMPOSIUM ON MEDICAL PHYSICS. 2010. Mexico.
    32.Bartlett, D., et al., Concepts and quantities in
    spectrometry and radiation protection. Radiation
    Protection Dosimetry, 2003. 107(1-3): p. 23.
    33.Sato, T., et al., Fluence-to-dose conversion
    coefficients for neutrons and protons calculated using
    the PHITS code and ICRP/ICRU adult reference
    computational phantoms. Physics in Medicine and Biology,
    2009. 54: p. 1997.
    34.Thomas, D. Neutron Spectrometry. in International
    Radiation Protection Association 11th International
    Congress. 2009. South Africa.
    35.Sanchez, G., T. Arteaga, and J. Rodriguez, Neutron
    Spectra Unfolding with Artificial Neural Networks.
    Encuentro de Investigación en Ingeniería Eléctrica, 2005.
    36.Vega-Carrillo, H., et al., Response matrix of a
    multisphere neutron spectrometer with an^ 3He
    proportional counter. Revista Mexicana de Fisica, 2005.
    51(1): p. 47.
    37.Bedogni, R., A. Esposito, and M. Chiti, Determination of
    workplace neutron spectra at a high energy hadron
    accelerator using active and passive Bonner sphere
    spectrometers. Radiation measurements, 2008. 43(2-6): p.
    1113-1117.
    38.Gallego, E., et al., BSS/6 LiI Response Matrix to
    neutrons from 2.5 E (-8) to 100 MeV.
    39.Hajek, M., et al. Comparison of measurements with active
    and passive Bonner sphere spectrometers. 2000.
    40.Silari, M., et al., Intercomparison of radiation
    protection devices in a high-energy stray neutron field.
    Part III: Instrument response. Radiation measurements,
    2009.
    41.Gregori, B., S. Papadopulos, and J. Cruzate, Multisphere
    Neutron Spectrometric System with Thermoluminescence
    Dosemeters: Sensitive Improvement. Radiation Protection
    Dosimetry, 2002. 101(1-4): p. 133.
    42.Van Eijk, C., Neutron detection and neutron dosimetry.
    Radiation Protection Dosimetry, 2004. 110(1-4): p. 5.
    43.Thomas, D., Neutron spectrometry for radiation
    protection. Radiation Protection Dosimetry, 2004. 110(1-
    4): p. 141.
    44.Brooks, F. and H. Klein, Neutron spectrometry--
    historical review and present status. Nuclear
    Instruments and Methods in Physics Research Section A:
    Accelerators, Spectrometers, Detectors and Associated
    Equipment, 2002. 476(1-2): p. 1-11.
    45.Bedogni, R., et al., FRUIT: An operational tool for
    multisphere neutron spectrometry in workplaces. Nuclear
    Instruments and Methods in Physics Research Section A:
    Accelerators, Spectrometers, Detectors and Associated
    Equipment, 2007. 580(3): p. 1301-1309.
    46.Mendez, R., et al., Study of the neutron field in the
    vicinity of an unshielded PET cyclotron. Physics in
    Medicine and Biology, 2005. 50: p. 5141.
    47.Reginatto, M., Resolving power of a multisphere neutron
    spectrometer. Nuclear Instruments and Methods in Physics
    Research Section A: Accelerators, Spectrometers,
    Detectors and Associated Equipment, 2002. 480(2-3): p.
    690-695.
    48.Wiegel, B. and A. Alevra, NEMUS--the PTB Neutron
    Multisphere Spectrometer: Bonner spheres and more.
    Nuclear Instruments and Methods in Physics Research
    Section A: Accelerators, Spectrometers, Detectors and
    Associated Equipment, 2002. 476(1-2): p. 36-41.
    49.Hertel, N. and J. Davidson, The response of Bonner
    spheres to neutrons from thermal energies to 17.3 MeV.
    Nuclear Instruments and Methods in Physics Research
    Section A: Accelerators, Spectrometers, Detectors and
    Associated Equipment, 1985. 238(2-3): p. 509-516.
    50.Thomas, D. and A. Alevra, Bonner sphere spectrometers--a
    critical review. Nuclear Instruments and Methods in
    Physics Research Section A: Accelerators, Spectrometers,
    Detectors and Associated Equipment, 2002. 476(1-2): p.
    12-20.
    51.Cruzate, J., J. Carelli, and B. Gregori, Bonner Sphere
    Spectrometer.
    52.Johnson, T., et al. Recent advances in Bonner sphere
    neutron spectrometry. 1987.
    53.Tripathy, S., et al., Measurement of 241Am-Be spectra
    (bare and Pb-covered) using TLD pairs in multi-spheres:
    Spectrum unfolding by different methods. Nuclear
    Instruments and Methods in Physics Research Section A:
    Accelerators, Spectrometers, Detectors and Associated
    Equipment, 2009. 598(2): p. 556-560.
    54.Wiegel, B., et al., Intercomparison of radiation
    protection devices in a high-energy stray neutron field,
    Part II: Bonner sphere spectrometry. Radiation
    measurements, 2009. 44(7-8): p. 660-672.
    55.Vega-Carrillo, H., Neutron energy spectra inside a PET
    cyclotron vault room. Nuclear Instruments and Methods in
    Physics Research Section A: Accelerators, Spectrometers,
    Detectors and Associated Equipment, 2001. 463(1-2): p.
    375-386.
    56.Bramblett, R., R. Ewing, and T. Bonner, A new type of
    neutron spectrometer. Nuclear instruments and Methods,
    1960. 9(1): p. 1-12.
    57.Reginatto, M., What can we learn about the spectrum of
    high-energy stray neutron fields from Bonner sphere
    measurements? Radiation measurements, 2009. 44(7-8): p.
    692-699.
    58.Harshaw TLD Model 3500, Manual Reader. 2007: Thermo
    Fisher Scientific Inc.
    59.Hsu, F., et al., Estimation of photon and neutron dose
    distributions in the THOR BNCT treatment room using dual
    TLD method. Radiation measurements, 2008. 43(2-6): p.
    1089-1094.
    60.Vega-Carrillo, H., TLD pairs, as thermal neutron
    detectors in neutron multisphere spectrometry. Radiation
    measurements, 2002. 35(3): p. 251-254.
    61.Vega Carrillo, H., et al., Response Matrix for a
    Multisphere Spectrometer using a 6LiF Thermoluminescence
    Dosemeter. Radiation Protection Dosimetry, 1999. 81(2):
    p. 133.
    62.謝明崇, 中子偵檢器校正與實務研討. 2004, 核能研究所.
    63.朱健豪, 中子校正系統性能評估之研究. 1998, 核能研究所.
    64.Carrillo, H.R.V. and N. Hertel, Application of Bonner
    spheres spectrometer In Californium-252 neutron field
    dosimetry.
    65.Bohm, J., et al., ISO recommended reference radiations
    for the calibration and proficiency testing of
    dosemeters and dose rate meters used in radiation
    protection. Radiation Protection Dosimetry, 1999. 86(2):
    p. 87.
    66.Mares, V. and H. Schraube, Evaluation of the response
    matrix of a Bonner sphere spectrometer with LiI detector
    from thermal energy to 100 MeV. Nuclear Instruments and
    Methods in Physics Research Section A: Accelerators,
    Spectrometers, Detectors and Associated Equipment, 1994.
    337(2-3): p. 461-473.
    67.Matzke, M., Unfolding methods, Report on work performed
    at the Physikalisch Technische Bundesanstalt (PTB)
    Braunschweig, URL= http://www. matzke. gmxhome.
    de/Dateien/Theory. pdf.
    68.Sweezy, J., N. Hertel, and K. Veinot, BUMS--Bonner
    sphere Unfolding Made Simple: an HTML based multisphere
    neutron spectrometer unfolding package. Nuclear
    Instruments and Methods in Physics Research Section A:
    Accelerators, Spectrometers, Detectors and Associated
    Equipment, 2002. 476(1-2): p. 263-269.
    69.Reginatto, M. and P. Goldhagen, MAXED, a computer code
    for maximum entropy deconvolution of multisphere neutron
    spectrometer data. Health physics, 1999. 77(5): p. 579.
    70.Reginatto, M., P. Goldhagen, and S. Neumann, Spectrum
    unfolding, sensitivity analysis and propagation of
    uncertainties with the maximum entropy deconvolution
    code MAXED. Nuclear Inst. and Methods in Physics
    Research, A, 2002. 476(1-2): p. 242-246.
    71.Esposito, A. and M. Nandy, Measurement and unfolding of
    neutron spectra using Bonner spheres. Radiation
    Protection Dosimetry, 2004. 110(1-4): p. 555.
    72.Reginatto, M., The 'few channel' unfolding programs in
    the UMG package. . 2004: PTB.
    73.Howell, R., et al., Measurements of secondary neutron
    dose from 15 MV and 18 MV IMRT. Radiation Protection
    Dosimetry, 2005. 115(1-4): p. 508.
    74.Kralik, M. and K. Turek, Characterisation of neutron
    fields around high-energy x-ray radiotherapy machines.
    Radiation Protection Dosimetry, 2004. 110(1-4): p. 503.
    75.Thomas, D., A. Bardell, and E. Macaulay,
    Characterisation of a gold foil-based Bonner sphere set
    and measurements of neutron spectra at a medical
    accelerator. Nuclear Instruments and Methods in Physics
    Research Section A: Accelerators, Spectrometers,
    Detectors and Associated Equipment, 2002. 476(1-2): p.
    31-35.
    76.Zanini, A., et al., Neutron spectra in a tissue
    equivalent phantom during photon radiotherapy treatment
    by LINACS. Radiation Protection Dosimetry, 2004. 110(1-
    4): p. 157.
    77.Kase, K., et al., Neutron fluence and energy spectra
    around the Varian Clinac 2100C/2300C medical
    accelerator. Health physics, 1998. 74(1): p. 38.
    78.黎俊蔚, 多球體度量中子能譜技術及校正與應用, in 原子科學
    系. 1982, 國立清華大學: 台灣.
    79.金啟明, 核一廠中子人員劑量計的校正與評估, in 原子科學系.
    1984, 國立清華大學: 台灣.
    80.朱健豪, 超熱中子濾屏之評估, in 生醫工程與環境科學系.
    1994, 國立清華大學: 台灣.
    81.許榮鈞, 中子伴隨遷移計算之研究與應用, in 工程與系統科學
    系. 1992, 國立清華大學: 台灣.
    82.龔俊宏, 以 MCNP 模擬中子偵檢器之能量回應函數, in 生醫工程
    與環境科學系. 1994, 國立清華大學: 台灣.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE