簡易檢索 / 詳目顯示

研究生: 莊世璋
Chuang, Shih-Chang
論文名稱: 軟性神經探針之三維組裝的設計與製程
Design and Fabrication of Flexible Neural Microprobe for Three Dimensional Assembly
指導教授: 饒達仁
Yao, Da-Jeng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 84
中文關鍵詞: 三維組裝微電極陣列軟性基材
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主題主要是著重於開發一”軟性三維立體微電極陣列”,希望能運用在長時間大腦神經訊號的紀錄。大腦裡面有數以千億計的神經細胞,讓我們能夠因應外界的環境變化而產生適當的身體反應, 並且有思考、記憶、情緒變化的能力,當神經受損時,神經介面可以被使用來幫忙傳遞或刺激訊號。
    目前以矽基材的微電極陣列最為普遍,但由於常會有發炎的症狀,因此這幾年已開始往軟性高分子來發展,本次將提出一” 軟性三維立體微電極陣列”的製作,先利用黃光微影、物理氣相沉積、Parylene、UV和乾式蝕刻等等技術,完成複合式軟性平面微電極,再使用靜電驅動和微流道的設計,引入PEG固定微電極來完成出平面的組裝。
    機械強度測試方面,製作出的微電極確實可以成功地刺入假腦內;生物活體的實驗方面,第一代探針從美國螯蝦的脫逃神經系統中量測到神經訊號,誘發出的動作電位振幅約為±75 μV。
    未來的目標將把目前第二代三維立體微電極陣列的研究成果,設計到鼠腦皮層的紀錄上面;同時,也會進行材料的耐久性及生物相容性的測試,以達到最終可以運用到長時間大腦神經訊號的記錄上面。


    摘要 I Abstract II 誌謝 III 目錄 V 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 文獻回顧 8 1.3.1微線電極 10 1.3.2矽基材電極 12 1.3.3高分子基材電極 22 1.4 研究目標 31 1.5 章節介紹 32 第二章 微電極陣列設計與製程規劃 33 2.1 元件設計考量 33 2.1.1材料選擇 33 2.1.2三維組裝的驅動來源 34 2.1.3三維組裝的固定機制 36 2.2 第一代微電極陣列的製程與實驗 37 2.2.1製程規劃 37 2.2.2製程步驟 38 2.2.3製程結果 41 2.3 第二代微電極陣列的製程與實驗 43 2.3.1製程規劃 44 2.3.2製程步驟 51 2.3.3製程結果 56 第三章 實驗結果與討論 59 3.1 製程結果討論 59 3.2 機械強度測試 63 3.3 介面阻抗的量測 65 3.4 神經訊號的紀錄 72 第四章 結論與未來工作 74 參考文獻 77

    [1] Brain Waves, "http://brainwaves.corante.com/archives/2007/08/02/consciousness_restored_to_man_after_six_years_with_deep_brain_stimulation.php"
    [2] 人工電子耳, "http://www.cochlear.com.tw/"
    [3] 王秀園, "都是腦子惹的禍," 童心房, 台北縣, 2004。
    [4] D. M. Taylor, S. I. H. Tillery, and A. B. Schwartz, "Direct Cortical Control of 3D Neuroprosthetic Devices " Science, vol. 296, pp. 1829-1832, 2002.
    [5] M. A. Lebedev, and M. A. L. Nicolelis, "Brain-Machine Interfaces: Past, Present and Future," Trends in Neurosciences, vol. 29, pp. 536-546, 2006.
    [6] T. Suzuki, S. Takeuchi, D. Ziegle, O. Fukayama, Y. Morishita, D. Frutiger, K. Ishii, and K. Mabuchi, "Development of Flexible Neural Probes and their Application to Rat Brain Interfaces," SICE Annual Conference, Sapporo, Japan, August 4-6, 2004.
    [7] A. Bozkurt, R. Gilmour, D. Stern, and A. Lal, "MEMS Based Bioelectronic Neuromuscular Interfaces for Insect Cyborg Flight Control," The 21st IEEE International Conference on Micro Electro Mechanical Systems, Tucson, Arizona, USA, January 13-17, 2008.
    [8] K. C. Cheung, "Implantable Microscale Neural Interfaces," Biomedical Microdevices, vol. 9, pp. 923-938, 2007.
    [9] Nervous System and Brain, "http://biologyclass.neurobio.arizona.edu/lect2b.html"
    [10] I. W. Donald, "Production, Properties and Applications of Microwire and Related Products," Journal of Materials Science, vol. 22, pp. 2661-2679, 1987.
    [11] F. Strumwasser, "Long-Term Recording from Single Neurons in Brain of Unrestrained Mammals," Science, vol. 127, pp. 469-470, 1958.
    [12] K. D. Wise, A. M. Sodagar, Y. Yao, M. N. Gulari, G. E. Perlin, and K. Najafi, "Microelectrodes, Microelectronics, and Implantable Neural Microsystems," Proceedings of the IEEE, vol. 96, pp. 1184-1202, 2008.
    [13] G. Purushothaman, B. B. Scott, and D. C. Bradley, "An Acute Method for Multielectrode Recording from the Interior of Sulci and other Deep Brain Areas," Journal of Neuroscience Methods, vol. 153, pp. 86-94, 2006.
    [14] H. Takahashi, J. Suzurikawa, M. Nakao, F. Mase, and K. Kaga, "Easy-to-Prepare Assembly Array of Tungsten Microelectrodes," IEEE Transactions on Biomedical Engineering vol. 52, pp. 952-956, 2005.
    [15] Y. Yao, G. Li, Q. Jin, and J. Zhao, "A Micromachine-Based Assembly of Tungsten Multichannel Electrodes for Neural Recording," Proceedings of the 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Sanya, China, January 6-9, 2008.
    [16] K. D. Wise, "Silicon Microsystems for Neuroscience and Neural Prostheses," IEEE Engineering in Medicine and Biology Magazine, vol. 24, pp. 22-29, 2005.
    [17] J. Chen, K. D. Wise, J. F. Hetke, and S. C. Bledsoe, "A Multichannel Neural Probe for Selective Chemical Delivery at the Cellular Level," Biomedical Engineering, IEEE Transactions on, vol. 44, pp. 760-769, 1997.
    [18] J. F. Hetke, J. C. Williams, D. S. Pellinen, R. J. Vetter, and D. R. Kipke, "3-D Silicon Probe Array with Hybrid Polymer Interconnect for Chronic Cortical Recording," Proceedings of the 1st International IEEE EMBS Conference on Neural Engineering, Capri Island, Italy, March 20-22, 2003.
    [19] P. K. Campbell, K. E. Jones, R. J. Huber, K. W. Horch, and R. A. Normann, "A Silicon-Based, Three-Dimensional Neural Interface: Manufacturing Processes for an Intracortical Electrode Array," IEEE Transactions on Biomedical Engineering, vol. 38, pp. 758-768, 1991.
    [20] A. N. Badi, T. R. Kertesz, R. K. Gurgel, C. Shelton, and Richard A. Normann, "Development of a Novel Eighth-Nerve Intraneural Auditory Neuroprosthesis," Laryngoscope, vol. 113, pp. 833-842, 2003.
    [21] R. Bhandari, S. Negi, L. Rieth, R. A. Normann, and F.Solzbacher, "A Novel Method of Fabricating Convoluted Shaped Electrode Arrays for Neural and Retinal Prosthesis," Proceedings of the 14th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers '07), Lyon, France, June 10-14, 2007.
    [22] J. Wu, and W. C. Tnag, "Microfabrication of High-Density Microelectrode Arrays for Peripheral Intraneural Applications," Proceedings of the 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Bangkok, Thailand, January 16-19, 2007.
    [23] A. Branner, R. B. Stein, E. Fernandez, Y. Aoyagi, and R. A. Normann, "Long-Term Stimulation and Recording With a Penetrating Microelectrode Array in Cat Sciatic Nerve," IEEE Transactions on Biomedical Engineering, vol. 51, pp. 146-157, 2004.
    [24] D. J. Yao, C. H. Chen, C. C. Chiao, and S. W. Lu, "Micro Multi-probes Electrode Array for the Recording Retinal Neuron Signal," Proceedings of the 14th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers '07), Lyon, France, Jun. 10-14, 2007.
    [25] D. J. Yao, C. H. Chen, S. H. Tseng, and S. R. Yeh, "Design and Fabrication of Micro Multi-Probe Electrode Arrays," The 2nd Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Bangkok, Thailand, Jan. 16-19, 2007.
    [26] 陳昶孝, "高深寬比微型多探針電極陣列系統," 國立清華大學奈米工程與微系統研究所碩士論文, 2006。
    [27] K. C. Cheung, K. Djupsund, Y. Dan, and L. P. Lee, "Implantable Multichannel Electrode Array Based on SOI Technology," Journal of Microelectromechanical Systems, vol. 12, pp. 179-184, 2003.
    [28] R. Huang, C. Pang, Y.-C. Tai, J. Emken, C. Ustun, and R. Andersen, "Parylene Coated Silicon Probes for Neural Prosthesis," Proceedings of the 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Sanya, Hainan, China, January 6-9, 2008.
    [29] C. Pang, J. G. Cham, S. Musallam, Y. C. Tai, J. W. Burdick, and R. A. Andersen, "Monolithic Silicon Probes with Flexible Parylene Cables for Neural Prostheses," Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Zhuhai, China, January 18-21, 2006.
    [30] C. Pang, J. G. Cham, Z. Nenadic, S. Musallam, Y. C. Tai, J. W. Burdick, and R. A. Andersen, "A New Multi-Site Probe Array with Monolithically Integrated Parylene Flexible Cable for Neural Prostheses," The 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Shanghai, China, Sept. 1-4, 2005.
    [31] C. Pang, J. G.Cham, Z. Nenadic, Y. C. Tai, J. W. Burdick, and R. A. Andersen, "A New Neural Recording Electrode Array with Parylene Insulating Layer," The 9th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Boston, Massachusetts, USA, October 9-13, 2005.
    [32] T. A. Fofonoff, S. M. Martel, N. G. Hatsopoulos, J. P. Donoghue, and I. W. Hunter, "Microelectrode Array Fabrication by Electrical Discharge Machining and Chemical Etching," IEEE Transactions on Biomedical Engineering, vol. 51, pp. 890-895, 2004.
    [33] T. Kawano, H. Takao, K. Sawada, and M. Ishida, "Neural Recording Chip with Penetrating Si Microprobe Electrode Array by Selective Vapor-Liquid-Solid Growth Method," Proceedings of the 26th Annual International Conference of the IEEE EMBS, San Francisco, CA, USA, September 1-5, 2004.
    [34] K. Takei, T. Kawashima, K. Sawada, and M. Ishida, "Out-of-Plane Microtube Arrays for Biomedical Sensors Using Vapor-Liquid-Solid Growth Method," IEEE Sensors Journal, vol. 8, pp. 470-475, 2008.
    [35] K. Takei, T. Kawashima, H. Takao, K. Sawada, and M. Ishida, "Si Micro Probe and SiO2 Micro Tube Array Integrated with NMOSFETs," Proceedings of the 14th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers '07), Lyon, France, June 10-14, 2007.
    [36] P. Thiébaud, C. Beuret, N. F. D. Rooij, and M. Koudelka-Hep, "Microfabrication of Pt-tip Microelectrodes," Sensors and Actuators B: Chemical, vol. 70, pp. 51-56, 2000.
    [37] D. H. Szarowski, M. D. Andersen, S. Retterer, A. J. Spence, M. Isaacson, H. G. Craighead, J. N. Turner, and W. Shain, "Brain Responses to Micro-machined Silicon Devices," Brain Research, vol. 983, pp. 23-35, 2003.
    [38] R. R. R. Jr, J. A. Miller, and W. M. Reichert, "Polyimides as Biomaterials: Preliminary Biocompatibility Testing," Biomaterials, vol. 14, pp. 627-635, 1993.
    [39] T. Stieglitz, S. Kammer, K. P. Koch, S. Wien, and A. Robitzki, "Encapsulation of Flexible Biomedical Microimplants with Parylene C," The 7th Annual Conference of the International Functional Electrical Stimulation Society, Ljubljana, Slovenia, June 25-29, 2002.
    [40] G. Voskerician, M. S. Shive, R. S. Shawgo, H. V. Recum, J. M. Anderson, M. J. Cima, and R. Langer, "Biocompatibility and Biofouling of MEMS Drug Delivery Devices," Biomaterials, vol. 24, pp. 1959-1967, 2003.
    [41] B. A. Koeneman, K.-K. Lee, A. Singh, J. Heb, G. B. Raupp, A. Panitch, and D. G. Capco, "An ex Vivo Method for Evaluating the Biocompatibility of Neural Electrodes in Rat Brain Slice Cultures," Journal of Neuroscience Methods, vol. 137, pp. 257-263, 2004.
    [42] A. Mercanzini, K. Cheung, D. Buhl, M. Boers, A. Maillard, P. Colin, J.-C. Bensadoun, A. Bertsch, A. Carleton, and P. Renaud, "Demonstration of Cortical Recording and Reduced Inflammatory Response Using Flexible Polymer Neural Probes," The 20th IEEE International Conference on Micro Electro Mechanical Systems, Kobe, Japan, January 21-25, 2007.
    [43] K. C. Cheung, P. Renaud, H. Tanila, and K. Djupsund, "Flexible Polyimide Microelectrode Array for in Vivo Recordings and Current Source Density Analysis," Biosensors and Bioelectronics, vol. 22, pp. 1783-1790, 2007.
    [44] A. Mercanzini, K. Cheung, D. L. Buhl, M. Boers, A. Maillard, P. Colin, J.-C. Bensadoun, A. Bertsch, and P. Renaud, "Demonstration of Cortical Recording Using Novel Flexible Polymer Neural Probes," Sensors and Actuators A: Physical, vol. 143, pp. 90-96, 2008.
    [45] S. Takeuchi, T. Suzuki, K. Mabuchi, and H. Fujita, "3D Flexible Multichannel Neural Probe Array," Journal of Micromechanics and Microengineering, vol. 14, pp. 104-107, 2004.
    [46] E. M. Schmidt, J. S. Mcintosh, and M. J. Bak, "Long-term Implants of Parylene-C Coated Microelectrodes " Medical & Biological Engineering & Computing, vol. 26, pp. 96-101, 1988.
    [47] E. M. Schmidt, M. J. Bak, and P. Christensen, "Laser Exposure of Parylene-C Insulated Microelectrodes," Journal of Neuroscience Methods, vol. 62, pp. 89-92, 1995.
    [48] D. C. Rodger, A. J. Fong, W. Li, H. Ameri, I. Lavrov, H. Zhong, S. Saati, P. Menon, E. Meng, J. W. Burdick, R. R. Roy, V. R. Edgerton, J. D. Weiland, M. S. Humayun, and Y. C. Tai, "High-Density Flexible Parylene-based Multielectrode Arrays for Retinal and Spinal Cord Stimulati," Proceedings of the 14th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers '07), Lyon, France, June 10-14, 2007.
    [49] S. Takeuchi, D. Ziegler, Y. Yoshida, K. Mabuchi, and T. Suzuki, "Parylene Flexible Neural Probes Integrated with Microfluidic Channels," Lab on a Chip, vol. 5, pp. 519-523, 2005.
    [50] T. Suzuki, D. Ziegler, K. Mabuchi, and S. Takeuchi, "Flexible Neural Probes with Micro-fluidic Channels for Stable Interface with the Nervous System," Proceedings of the 26th Annual International Conference of the IEEE EMBS, San Francisco, CA, USA, September 1-5, 2004.
    [51] T. Suzuki, K. Wuchi, and S. Takeuchi, "A 3D Flexible Parylene Probe Array for Multichannel Neural Recording," Proceedings of the 1st International IEEE EMBS Conference on Neural Engineering, Capri Island, Italy, March 20-22, 2003.
    [52] Y. Kato, I. Saito, T. Hoshino, T. Suzuki, and K. Mabuchi, "Preliminary Study of Multichannel Flexible Neural Probes Coated with Hybrid Biodegradable Polymer," Proceedings of the 28th IEEE EMBS Annual International Conference, New York City, USA, Aug 30-Sept 3, 2006.
    [53] Y. Kato, M. Nishino, I. Saito, T. Suzuki, and K. Mabuchi, "Flexible Intracortical Neural Probe with Biodegradable Polymer for Delivering Bioactive Components," Proceedings of 2006 International Conference on Microtechnologies in Medicine and Biology, Okinawa, Japan, May 9-12, 2006.
    [54] H. Lu, S. H. Cho, J. B. Lee, L. Cauller, M. R. Ortega, and G. Hughes, "SU8-Based Micro Neural Probe for Enhanced Chronic in-Vivo Recording of Spike Signals from Regenerated Axons," The 5th IEEE Conference on Sensors, Daegu, Korea, October 22-25, 2006.
    [55] B. A. Hollenberg, C. D. Richards, R. Richards, D. F. Bahr, and D. M. Rector, "A MEMS Fabricated Flexible Electrode Array for Recording Surface Field Potentials," Journal of Neuroscience Methods, vol. 153, pp. 147–153, 2006.
    [56] L. J. Fernandez, M. Tijero, R. Vilares, J. Berganzo, K. Mayora, and F. J. Blanco, "SU-8 Based Microneedle for Drug Delivery in Nanomedicine Applications with Integrated Electrodes," Eleventh International Conference on Miniaturized Systems for Chemistry and Life Sciences(μTAS2007), Paris,France, October 7-11, 2007.
    [57] H. Y. Chan, D. M. Aslam, S. H. Wang, G. M. Swain, and K. D. Wise, "Fabrication and Testing of a Novel All-Diamond Neural Probe for Chemical Detection and Electrical Sensing Applications," The 21st IEEE International Conference on Micro Electro Mechanical Systems, Tucson, Arizona, USA, January 13-17, 2008.
    [58] H. Y. Chan, M. Varney, D. M. Aslam, and K. D. Wise, "Fabrication and Characterization of All-Diamond Microprobes for Electrochemical Analysis," Proceedings of the 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Sanya, China, January 6-9, 2008.
    [59] M. Schuettler, S. Stiess, B. V. King, and G. J. Suaning, "Fabrication of Implantable Microelectrode Arrays by Laser Cutting of Silicone Rubber and Platinum Foil," Journal of Neuroscience Methods, vol. 2, pp. S121-S128, 2005.
    [60] H. Zhu, J. He, and B. Kim, "Surface-Micromachined Neural Sensors with Integrated Double Side Recordings on Dry-Etch Benzocyclobutene(BCB) Substrate," Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, September 1-4, 2005.
    [61] 靜電簡介, "http://www.esd.org.cn/BIG/introduce.html"
    [62] N. S. Shaar, G. Barbastathis, and C. Livermore, "Cascaded Mechanical Alignment for Assembling 3D MEMS," The 21st IEEE International Conference on Micro Electro Mechanical Systems, Tucson, Arizona, USA, January 13-17, 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE