研究生: |
李 茁 Li, Zhuo |
---|---|
論文名稱: |
利用深層網路計算熱方程的格林函數 Using deep networks to compute the Green’s function of the heat equation |
指導教授: |
陳啟銘
Chen, Chi-Ming 朱家杰 Chu, Chia-Chieh Jay |
口試委員: |
林得勝
Lin, Te-Sheng 蔡志強 Tsai, Je-Chiang |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 計算與建模科學研究所 Institute of Computational and Modeling Science |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 37 |
中文關鍵詞: | 物理信息神經網絡 、熱方程 、剛性問題 、偏微分方程 、計算物理學 、科學計算 |
外文關鍵詞: | PINNs, heat equation, stiff problems, PDEs, computational physics, scientific computing |
相關次數: | 點閱:63 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文探討了物理信息神經網絡 (PINNs) 在求解熱方程中的應用。傳統神經網絡在高效處理剛性問題方面遇到挑戰。為了解決這個問題,本文提出了幾種方法,包括用已知解增強神經網絡,使用離散和連續時間模型的混合方法,以及優化具有固定空間維度的神經網絡。
這些方法的有效性通過兩個例子進行了展示:一個涉及具有可變擴散係數的熱核,另一個則具有空間變係數。結果展示了所提出的方法在準確逼近熱方程解方面的能力,即使在存在剛性項和複雜初始條件的情況下也是如此。
我們討論了潛在的未來研究方向並承認了本研究的局限性。儘管我們的研究集中在熱方程上,但所提出的方法可以擴展到求解在各種領域中遇到的廣泛剛性偏微分方程 (PDEs)。
關鍵詞:PINNs、熱方程、剛性問題、混合建模、偏微分方程、計算物理學、科學計算
This paper explores the application of Physics-Informed Neural Networks (PINNs) \cite{raissi2019physics} in solving the heat equation. Traditional Neural Networks encounter challenges in efficiently handling stiff problems. To address this, the paper proposes several methods, including augmenting Neural Networks with known solutions, using discrete and continuous-time models in a hybrid approach, and optimizing Neural Networks with fixed spatial dimensions.
The effectiveness of these methods is demonstrated through two examples: one involving a heat kernel with a variable diffusion coefficient and another with spatially varying coefficients. The results showcase the capability of the proposed approaches in accurately approximating solutions to the heat equation, even in the presence of stiff terms and complex initial conditions.
We discuss potential future research directions and acknowledge the limitations of our study. While our focus is on the heat equation, the proposed methods can be extended to solve a wide range of stiff partial differential equations (PDEs) encountered in various domains.
Keywords: PINNs, heat equation, stiff problems, hybrid modeling, PDEs, computational physics, scientific computing
[1] Nicolas Boull´e, Christopher J Earls, and Alex Townsend. Data-driven discov
ery of green’s functions with human-understandable deep learning. Scientific
reports, 12(1):4824, 2022.
[2] Craig R Gin, Daniel E Shea, Steven L Brunton, and J Nathan Kutz. Deep
green: deep learning of green’s functions for nonlinear boundary value prob
lems. Scientific reports, 11(1):21614, 2021.
[3] Wei-Fan Hu, Te-Sheng Lin, Yu-Hau Tseng, and Ming-Chih Lai. An efficient
neural-network and finite-difference hybrid method for elliptic interface prob
lems with applications. arXiv preprint arXiv:2210.05523, 2022.
[4] Wei-Fan Hu, Yi-Jun Shih, Te-Sheng Lin, and Ming-Chih Lai. A shallow
physics-informed neural network for solving partial differential equations on
static and evolving surfaces. Computer Methods in Applied Mechanics and
Engineering, 418:116486, 2024.
[5] Ameya D Jagtap, Kenji Kawaguchi, and George Em Karniadakis. Adap
tive activation functions accelerate convergence in deep and physics-informed
neural networks. Journal of Computational Physics, 404:109136, 2020.
[6] Johannes Lederer. Activation functions in artificial neural networks: A sys
tematic overview. arXiv preprint arXiv:2101.09957, 2021.
[7] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik
Bhattacharya, Andrew Stuart, and Anima Anandkumar. Fourier neu
ral operator for parametric partial differential equations. arXiv preprint
arXiv:2010.08895, 2020.
[8] Guochang Lin, Fukai Chen, Pipi Hu, Xiang Chen, Junqing Chen, Jun Wang,
and Zuoqiang Shi. A neural network framework for learning green’s function.
ICLR 2022, 2021.
[9] Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning non
linear operators for identifying differential equations based on the universal
approximation theorem of operators. arXiv preprint arXiv:1910.03193, 2019.
[10] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed
neural networks: A deep learning framework for solving forward and inverse
putational physics, 378:686–707, 2019.
problems involving nonlinear partial differential equations. Journal of Com
[11] Jingwei Tang, Vinicius C Azevedo, Guillaume Cordonnier, and Barbara Solen
thaler. Neural green’s function for laplacian systems. Computers & Graphics,
107:186–196, 2022.
[12] Kejun Tang, Xiaoliang Wan, and Chao Yang. Das-pinns: A deep adaptive
sampling method for solving high-dimensional partial differential equations.
Journal of Computational Physics, 476:111868, 2023.
[13] Chenxi Wu, Min Zhu, Qinyang Tan, Yadhu Kartha, and Lu Lu. A com
prehensive study of non-adaptive and residual-based adaptive sampling for
physics-informed neural networks. Computer Methods in Applied Mechanics
and Engineering, 403:115671, 2023.
[14] Liu Yang, Siting Liu, Tingwei Meng, and Stanley J Osher. In-context operator
learning with data prompts for differential equation problems. Proceedings of
the National Academy of Sciences, 120(39):e2310142120, 2023.
[15] Liu Yang, Siting Liu, and Stanley J Osher. Fine-tune language models as
multi-modal differential equation solvers. arXiv preprint arXiv:2308.05061,
v4, Feb 2024. Available at https://doi.org/10.48550/arXiv.2308.05061.
[16] Lulu Zhang, Tao Luo, Yaoyu Zhang, Zhi-Qin John Xu, Zheng Ma, et al.
Mod-net: A machine learning approach via model-operator-data network for
solving pdes. arXiv preprint arXiv:2107.03673, 2021.