研究生: |
吳忠諭 Wu, Chung-Yu |
---|---|
論文名稱: |
週期性波長排列在全光式光封包交換機與光纖感測網路中的應用 Periodic Wavelength Arrangement in All Optical Packet Switch and Fiber Based Sensing System |
指導教授: |
馮開明
Feng, Kai-Ming |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 98 |
中文關鍵詞: | 光交換機 、光纖感測網路 、光纖光柵 、陣列波導光柵路由器 |
外文關鍵詞: | Arrayed waveguide grating, fiber Bragg grating, all optical packet switch, multiplexing, de-multiplexing, switching, add drop, sensor network, self-healing functionality |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In this work, we introduce the periodic wavelength arrangement, which is similar to the cyclic filtering and free spectral range characteristic of arrayed waveguide grating in to the design of all optical packet switch and fiber Bragg grating sensor network.
In all optical packet switch: We conceptually propose and experimentally demonstrate several novel optical packet switch, include buffer decomposition algorithm based all optical packet switch, wideband fiber Bragg grating based all optical packet switch, and configurable all optical packet switch. Moreover, in the fiber based sensing system, we also propose and demonstrate three dimensional mesh based sensing and three dimensional ring topology base sensing system, in which, comprehensive self-healing functionality and routing algorithm are also been implemented.
[1] Shun Yao, B. Mukherjee, S. J. B. Yoo, S. Dixit, “A unified study of contention-resolution schemes in optical packet-switched networks,” IEEE Journal Lightwave Technology, Vol.21, no.3, pp. 672-683, 2003.
[2] Shun Yao, Fei Xue, B. Mukherjee, S. J. B. Yoo, S. Dixit, “Electrical ingress buffering and traffic aggregation for optical packet switching and its effect on TCP-level performance in optical mesh networks,” IEEE Communications Magazine, Vol.40, No.9, pp.66-72, 2002.
[3] I. P. Kaminow, T. Li, and A. E. Willner, “Optical Fiber Telecommunication V,” Academic press, 2008.
[4] A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightw. Technol., Vol. 15, no. 8, pp. 1442-1463, August 1997.
[5] C. C. Chan, W. Jin, H. L. Ho, and M. S. Demokan, “Performance analysis of a time-division-multiplexing fiber Bragg grating sensor array by use of a tunable laser source,” IEEE Journal of Selected Topics in Quantum Electronics, Vol.6, pp.741-749, 2000
[6] K. P. Koo, A. B. Tveten, and S. T. Vohra, “Dense wavelength division multiplexing of fiber Bragg grating sensors using CDMA,” Electronics letters, Vol.35, pp. 165-167, 1999
[7] P. K. C. Chan, W. Jin, and M. S. Demokan, “FMCW multiplexing of fiber Bragg grating sensors,” IEEE Journal of Selected Topics in Quantum Electronics, Vol.6, pp. 756-763, 2000.
[8] L. Zhang, Y. Liu, J. A. R. Wiliams, and I. Bennion, “Enhanced FBG strain sensing multiplexing capacity using combination of intensity and wavelength dual coding technique,” IEEE Photonics Technology Letters, Vol. 11, pp. 1638-1641, 1999.
[9] X. Zhou, J. Yu, M.-F. Huang, Y. Shao, T. Wang, P. Magill, M. Cvijetic, L. Nelson, M. Birk, G. Zhang, S. Ten, H.B. Matthew, and S. K. Mishra, “32Tb/s (320x114Gb/s) PDM-RZ-8QAM transmission over 580km of SMF-28 ultra-low-loss fiber,” in Conf. of Optical Fiber Commun., (OFC2009), PDPB4
[10] Y. N. Singh, A. Kushwaha, and S. K. Bose, “Exact and approximate modeling of an FLBM-based all optical packet switch,” J. Lightw. Technol. Vol.21, pp. 719-726 2003.
[11] F. S. Choa, X. Zhao, X. Yu, J. Lin, J. P. Zhang, Y. Gu, G. Ru, G. Zhang, L. Li, H. Xiang, H. Hadimioglu, and H. J. Chao, “An optical packet switch based on WDM technologies,” J. Lightw. Technol. Vol.23, pp. 994-1014, 2005.
[12] C. Guillemot, M. Renaud, P. Gambini, C. Janz, I. Andonovic, R. Bauknecht, B. Bostica, M. Burzio, F. Callegati, M. Casoni, D. Chiaroni, F. Clerot, S. L. Danielsen, F. Dorgeuille, A. Dupas, A. Franzen, P. B. Hansen, D. K. Hunter, A. Kloch, R. Krahenbuhl, B. Lavigne, A. Le Corre, C. Raffaelli, M. Schilling, J.-C. Simon, and L. Zucchelli, “Transparent optical packet switching: the European ACTS KEOPS project approach,” J. Lightw. Technol. Vol.16, pp. 2117-2134, 1998.
[13] M. C. Chia, D. K. Hunter, I. Andonovic, P. Ball, I. Wright, S. P. Ferguson, K. M. Guild, and M. J. O’Mahony, “Packet loss and delay performance of feed back and feed forward array waveguide grating based optical packet switches with WDM inputs/outputs,” J. lightw. Technol. Vol.19, pp. 1241-1254, 2001.
[14] R. Srivastava, R. K. Singh, and Y. N. Singh, “Fiber-optic switch based on fiber Bragg gratings,” IEEE Photon. Technol. Lett. 20, pp. 1581-1583, 2008.
[15] J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Contiunously tunable, wavelength-selective buffering in optical packet switching network,” IEEE Photon. Technol. Lett. 20, pp. 1030-1032, 2008.
[16] R. S. Tucker, P.-C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffer: capabilities and fundamental limitations,” J. Lightw. Technol. 23, pp. 4046-4066 2005.
[17] H. Yang, S. J. B. Yoo, “All-optical variable buffering strategies and switch fabric architectures for future all-optical data router,” J. Lightw. Technol. 23, pp. 3321-3330, 2005.
[18] C.-C. Chou, C.-S. Chang, D.-S. Lee and J. Cheng, “A necessary and sufficient condition for the construction of 2-to-1 optical FIFO multiplexers by a single crossbar switch and fiber delay lines,” IEEE Trans. on Inform. Theory, pp.4519–4531, Oct., 2006.
[19] Pascual Muñoz, Daniel Pastor, and José Capmany, “Modeling and Design of Arrayed Waveguide Gratings.” IEEE/OSA Journal of Lightwave Technology, vol. 20, No. 4, pp. 661-674, April, 2002.
[20] Takahashi, H. Oda, K. Toba, H. Inoue, Y. , “Transmission Characteristics of Arrayed Waveguide N×N Wavelength Multiplexer, ” IEEE/OSA Journal of Lightwave Technology, vol. 13, No 3, pp. 447-455, March, 1995.
[21] Michael J. Connelly, “Semiconductor Optical Amplifiers,” Kluwer Academic Publishers, pp. 71.
[22] Wiesenfeld, J.M.; Glance, B.; Perino, J.S.; Gnauck, A.H., “Wavelength conversion at 10 Gb/s using a semiconductor optical amplifier,” IEEE Photonics Technology Letters, vol. 5, issue 11, pp.1300-1303, Nov. 1993.
[23] Terji Durhuus, Benny Mikkelsen, Carsten Joergensen, Soeren Lykke Danielsen, and Kristian E. Stubkjaer, “All-Optical Wavelength Conversion by Semiconductor Optical Aamplifiers,” IEEE/OSA Journal of Lightwave Technology, vol. 14, No. 6, pp.942-955, JUNE, 1996.
[24] Joergensen, C. Danielsen, S.L. Stubkjaer, K.E. Schilling, M. Daub, K. Doussiere, P. Pommerau, F. Hansen, P.B. Poulsen, H.N. Kloch, A. Vaa, M. Mikkelsen, B. Lach, E. Laube, G. Idler, W. Wunstel, K., “All-Optical Wavelength Conversion at Bit Rates Above 10 Gb/s Using Semiconductor Optical Amplifiers,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 3, issue 5, pp.1168-1179, Oct. 1997
[25] Yabin Ye, Xiaoping Zheng, Hanyi Zhang, Yanhe Li, and Yili Guo, “Theoretical Study on Wavelength Conversion Based on Cross Phase Modulation Using Semiconductor Optical Amplifiers,” International Journal of Infrared and Millimeter Waves, Vol. 22, No. 12, pp. 1785-1793, December 2001
[26] Cao, S.C. Cartledge, J.C. Berolo, E. Schilling, “Theoretical Model of Gain-Saturated Semiconductor Optical Amplifiers in Cross-Phase Modulation Wavelength Converters,” 13th Annual Meeting of the IEEE. Lasers and Electro-Optics Society 2000 Annual Meeting. LEOS 2000. vol. 2, pp. 778-779, Nov, 2000, Ottawa, Ont.
[27] V. Lal, M.L. Mašanović, J.A. Summers, G. Fish, and D.J. Blumenthal, “Monolithic wavelength converters for high-speed packet-switched optical networks,” IEEE J. Sel. Topics in Quantum Electron., pp. 49–57, Jan.–Feb., 2007.
[28] Q. Wu, P. L. Chu, and H. P. Chan, “General design approach to multichannel fiber Bragg grating,” Journal Lightwave Technology Vol. 24, 1571-1580, 2006.
[29] 11. H. Li, Y. Sheng, Y. Li, J. E. Rothenberg, “Phased-only sampled fiber Bragg gratings for high-channel-count chromatic dispersion compensation,” J. Lightw. Technol. Vol. 21, 2074-2083, 2003.
[30] K.-M. Feng, C.-Y. Wu D.-H. Hsueh, C.-S. Ku, C.-P. Chang, H.-Y. Lin, J. Cheng, and J. Chen, “Demonstration of an optical FIFO multiplexer,” in Proceedings of Optical Fiber Commun. Conf. (OFC)2008, OMN5.
[31] G. C. Righini, A. Tajani, and A. Antonello, An introduction to optoelectronic sensors, World Scientific, 2009, part I.
[32] Y. H. Huang, C. Lu, P. K. A. Wai, and H. Y. Tam, “Large-scale FBG sensors utilizing code division multiplexing,” in Conf. on Lasers and Electro-Optics (CLEO), CMZ4, 2008.
[33] A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightw. Technol., Vol. 15, no. 8, pp. 1442-1463, August 1997.
[34] T. A. Berkoff and A. D. Kersey, “Fiber Bragg grating array sensor system using a bandpass wavelength division multiplexer and interferometric detection,” IEEE Photon. Technol. Lett., vol. 8, no. 11, pp.1522-1524, Nov. 1996.
[35] Y. Yu, L. Lui, H. Tam, and W. Chung, “Fiber-laser-based wavelength-division multiplexed fiber Bragg grating sensor system,” IEEE Photon. Technol. Lett., Vol. 13, no. 7, pp. 702-704, July 2001.
[36] C. C. Chan, W. Jin, H. L. Ho, M. S. Demokan, “Performance analysis of a time-division-multiplexed fiber Bragg grating sensor array by use of a tunable laser source,” IEEE J. Sel. Top. Quantum Electron., Vol. 6, no. 5, pp. 741-749, Sept./Oct. 2000.
[37] T. A. Berkoff, M. A. Davis, D. G. Bellemore, A. D. Kersey, G. M. Williams, M. A. Putnam, “Hybrid time and wavelength division multiplexed fiber Bragg grating sensor array,” in Proc. SPIE, Vol. SPIE-2444, pp. 288-294, 1995.
[38] P. C. Peng, W. P. Lin, and S. Chi, “A Self-Healing Architecture for Fiber Bragg Sensor Network” in proc. Sensors, 60-63 (2004).
[39] P. C. Peng, H. Y. Tseng, and S. Chi, “A novel fiber-laser-based sensor network with self-healing function,” IEEE Photon. Technol. Lett., vol. 15, no. 2, pp. 275-277, Feb. 2003.
[40] P. C. Peng and K. Y. Huang, “Fiber Bragg Grating Sensor System with Two-Level Ring Architecture,” IEEE Sensors Journal, vol. 9, pp. 309 - 313, 2009.
[41] Peng-Chun Peng, Hong-Yih Tseng, and Sien Chi, “A Hybrid Star-Ring Architecture for Fiber Bragg Grating Sensor System,” IEEE Photonics Technology Letters, vol. 15, no. 9, pp. 1270 -1272, 2003.
[42] Peng-Chun Peng, Hong-Yih Tseng, and Sien Chi, “Long-Distance FBG Sensor System using a Linear-Cavity Fiber Raman Laser Scheme,” IEEE Photonics Technology Letters, vol. 16, no. 2, pp. 575 - 577, 2004.
[43] Peng-Chun Peng, Jia-He Lin, Hong-Yih Tseng, and Sien Chi, “Intensity and Wavelength Division Multiplexing FBG Sensor System using a Tunable Multiport Fiber Ring Laser,” IEEE Photonics Technology Letters, vol. 16, no. 1, pp. 230 -232, 2004.
[44] Y. Sano and T. Yoshino, “Fast optical wavelength interrogator employing arrayed waveguide grating for distributed fiber Bragg grating sensors,” J. Lightw. Technol., Vol. 21, no. 1, pp. 132-139, Jan. 2003.
[45] D. Waka, M. Webster, G. Wimpenny, K. Beacham, and L. Crawford, “Radio over fiber for mobile communications,” in Proc. IEEE Int. Topical Meeting Microw. Photon. (MWP 2004), Oct. 2004, pp.157-160.
[46] A. Wiberg, P. Perez-Millan, M.V. Andres, and P.O. Hedekvist, “Microwave-photonic frequency multiplication utilizing optical four-wave mixing and fiber Bragg gratings,” J. Lightw. Technol., vol. 24, no. 1, pp.329-334, Jan 2006.
[47] K. Ikeda, T. Kuri, and K. Kitayama, “Simultaneous three-band modulation and fiber-optic transmission of 2.5-Gb/s baseband, microwave-, and 60-GHz-band signals on a single wavelength,” J. Lightw. Technol., vol. 21, no. 12, pp.3194-3202, Dec 2003.
[48] G.L. Li, S.A. Pappert, C.K. Sun, W.S.C. Chang, and P.K.L. Yu, “Wide bandwidth traveling-wave InGaAsP/InP electroabsorption modulator for millimeter wave applications,” in Proc. IEEE MTT-S International, May 2001, pp.61-64.
[49] G.-K. Chang, J. Yu, Z. Jia, and J. Yu, “Novel optical-wireless access network architecture for providing broadband wireless and wired services,” in Proc. OFC 2006, Anaheim, CA, Paper OFM1.
[50] C.-T. Lin, W.-R. Peng, P.-C. Peng, J. Chen, C.-F. Peng, B.-S. Chiou, and S. Chi, “Simultaneous Generation of Baseband and Radio Signals Using Only One Single-Electrode Mach–Zehnder Modulator With Enhanced Linearity,” IEEE photon. Technol. Lett., vol. 18, no. 23, pp.2481-2483, Dec.2006.
[51] L. Chen, H. Wen, and S. Wen, “A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection,” IEEE photon. Technol. Lett., vol. 18, no. 19, pp.2056-2058, Oct. 2006.
[52] J. Yu, Z. Jia, T. Wang, and G.-K. Chang, “A Novel Radio-Over-Fiber Configuration Using Optical Phase Modulator to Generate an Optical mm-Wave and Centralized Lightwave for Uplink Connection,” IEEE photon. Technol. Lett., vol. 19, no. 3, pp.140-142, Feb. 2007.
[53] Z. Jia, J. Yu, D. Boivin, M. Haris, and G.-K. Chang, “Bidirectional RoF links using optically up-converted DPSK for downstream and remodulated OOK for upstream,” IEEE Photon. Technol. Lett., vol. 19, no. 9,pp. 653–655, May 2007
[54] Q. Chang, Y. Tian, J. Gao, T. Ye, Q. Li, and Y. Su, “Generation and Transmission of Optical Carrier Suppressed-Optical differential (Quadrature) Phase-Shift Keying (OCS-OD(Q)DPSK) Signals in Radio Over Fiber Systems,” J. Lightw. Technol., vol. 26, no. 15,pp.2611-2618, Aug 2008
[55] Z. Jia, J. Yu, G. Ellinas, and G.-K. Chang, “Key Enabling Technologies for Optical-Wireless Network: Optical Millimeter-Wave Generation, Wavelength Reuse, and Architecture,” J. Lightw. Technol., vol. 25, no. 11, pp.3452-3471, Nov 2007.
[56] K. Prince, I. T. Monroy, J. Seoane, and P. Jeppsen, “All-Optical envelop detection for Radio-over-Fiber links using external optical injection of a DFB laser,” Optics Express, vol. 16, no. 3, pp.2005-2014, Jan 2008.
[57] R. Sambaraju, J. Palaci, V. Polo, and J. L. Corral, “Photonic Envelop Detector for Broadband Wireless Signals using a Single Mach-Zehnder and a Fiber Bragg Grating,” in Proc. ECOC 2008, Brussels, P.6.04.