研究生: |
劉奕宏 Liu, Yi-Hung |
---|---|
論文名稱: |
Solvent-Induced Stresses and Surface Pattern in Glassy Polymer 溶劑在玻璃態高分子所引發的應力和表面波紋 |
指導教授: |
李三保
Lee, Sanboh |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 82 |
中文關鍵詞: | 聚甲基丙烯酸甲酯 、甲醇質傳 、除吸收 、聚碳酸酯 、表面波紋 |
外文關鍵詞: | PMMA, methanol transport, desorption, polycarbonate, surface pattern |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
We studied the solvent-induced stresses and solvent-induced surface pattern in glassy polymers. The solvent transport in glassy polymers is described by Case I, Case II, and anomalous transport. Case I transport is driven by concentration gradient, and Case II transport is due to stress relaxation. Anomalous transport is the mixture of Case I and Case II. Concentration profile for both two-side absorption of anomalous transport and one-side desorption of Case I transport were derived. Two initial conditions for one-side desorption in PMMA were analyzed. The activation energy of diffusion coefficient is found to be lower in one-side desorption than that in two-side absorption. The elastic models of stress distributions and longitudinal displacement arising from the mass transport were built up and were analyzed for PMMA. From the displacement data, the partial molar volume of methanol in PMMA during the transport process was determined.
Surface pattern occurs when a polymer slab is under a large enough compressive stresses. The stresses arising from the mass transport are found to be compressive near the surfaces for two-side resorption in PC. A method combining the solvent-induced stresses and the mechanical instability of a slab under compression is developed to analyze the solvent-induced surface pattern on PC. The calculated pattern wavelengths are at the same order and have the same trend with that of experimental results.
[1] J. Crank: The Mathematics of Diffusion, 2nd ed. Oxford University Press, Oxford (1975).
[2] H. Fujita and A. Kishimoto: Diffusion-controlled stress relaxation in polymers. II. Stress relaxation in swollen polymers. J. Polym. Sci. 28, 547 (1958).
[3] T. Alfrey, JR., E. F. Gurnee, and W. G. Lloyd: Diffusion in glassy polymers. J. Polym. Sci. Part C. 12, 249 (1966).
[4] S. P. Chen and J. A. D. Edin: Fickian diffusion of alkanes through glassy polymers: effects of temperature, diffusant size, and polymer structure. Polym. Eng. Sci. 20, 40 (1980).
[5] H. B. Hopfenberg, L. Nicolais, and E. Driole: Relaxation controlled (case II) transport of lower alcohols in poly(methyl methacrylate). Polymer 17, 195 (1976).
[6] Peterlin: Diffusion with discontinuous swelling .III. Type II diffusion as a particular solution of conventional diffusion equation. Natl. Bur. Stand. 81A, 243 (1977).
[7] N. L. Thomas and A. H. Windle: A theory of case II diffusion. Polymer 23, 529 (1982).
[8] C.Y. Hui and K. C. Wu: Case-II diffusion in polymers. I. Transient swelling. J. Appl. Phys. 61, 5129 (1987).
[9] C.Y. Hui and K. C. Wu: Case-II diffusion in polymers. II. Steady-state front motion. J. Appl. Phys. 61, 5137 (1987).
[10] P. Gao and M. R. Mackley: A general model for the diffusion and swelling of polymers and its application to ultra-high molecular mass polyethylene. Proc. R. Soc. Lond. A 444, 267 (1994).
[11] Friedman and G. Rossi: Phenomenological continuum equations to describe case II diffusion in polymeric materials. Macromolecules 30, 153 (1997).
[12] C. M. Hansen: The significance of the surface condition in solutions to the diffusion equation: explaining ‘‘anomalous” sigmoidal, Case II, and Super Case II absorption behavior. Euro. Polym. J. 46, 651 (2010).
[13] T. K. Kwei, T. T. Wang, and H. M. Zupko: Diffusion in glassy polymers. V. Combination of fickian and case II mechanisms. Macromolecules 5, 645 (1972).
[14] T. T. Wang and T. K. Kwei: Diffusion in glassy polymers. reexamination of vapor sorption data. Macromolecules 6, 919 (1973).
[15] J. P. Harmon, S. Lee, and J. C. M. Li: Methanol transport in PMMA: The effect of mechanical deformation. J. Polym. Sci.: Part A: Polym. Chem. 25(12), 3215 (1987).
[16] J. P. Harmon, S. Lee, and J. C. M. Li: Anisotropic methanol transport in PMMA after mechanical deformation. Polymer 29(7), 1221 (1988).
[17] C. S. Tsai and S. Lee: Transport kinetics of methanol in hydroxyethyl methacrylate homopolymer and its copolymers. J. Mater. Res. 19, 3359 (2004).
[18] J. Chiang, C. C. Chau, and S. Lee: The mass transport of ethyl acetate in syndiotactic polystyrene. Polym. Eng. Sci. 42, 724 (2002).
[19] K. F. Chou, C. C. Han, and S. Lee: Water Transport in Crosslinked 2-Hydroxyethyl Methacrylate. Polym. Eng. Sci. 40, 1004 (2000).
[20] H. Ouyang, C. C. Chen, S. Lee, and H. Yang: Acetone transport in poly(ethylene terephthalate) and related phenomena. J. Polym. Sci.: Part B: Polym. Phys. 36, 163 (1998).
[21] T. Wu, S. Lee and W. C. Chen: Acetone Absorption in Irradiated Polycarbonate. Macromolecules 28, 5751 (1995).
[22] S. Prussin: Generation and distribution of dislocations by solute diffusion. J. Appl. Phys. 32, 1876 (1961).
[23] J. C. M. Li: Physical chemistry of some microstructural phenomena. Metall. Mater. Trans. 9A, 1353 (1978).
[24] R. E. Reed-Hill: Physical metallurgy principles, 3rd ed. Van Nostrand, New York (1992), p.517.
[25] B. Tuck: Introduction to diffusion in semiconductors. Peter Peregrinus, London (1974), Chap 8.
[26] P. S. Ayres and P. G. Winchell: Dislocation arrangements resulting from the diffusion of Zn into Cu: Electron microscopy. J. Appl. Phys. 43, 816 (1972).
[27] E. Levine, J. Washburn, and G. Thomas: Diffusion-induced defects in silicon. I. J. Appl. Phys. 38, 81 (1967).
[28] P. J. Cousins and J. E. Cotter: The influence of diffusion-induced dislocations on high efficiency silicon solar cells. IEEE Trans. Electron Devices 53, 457 (2006).
[29] J. P. Hirth: Effects of hydrogen on the properties of iron and steel. Metall. Mater. Trans. 11A, 861 (1980).
[30] S. M. Sze: Physics of semiconductor devices, 2nd ed. Wiely, New York (1981), p.25.
[31] S. P. Timoshenko and J. N. Goodier: Theory of Elasticity, 3rd ed. McGraw-Hill, New York (1970), Chap 13.
[32] J. L. Chu and S. Lee: Diffusion‐induced stresses in a long bar of square cross section. J. Appl. Phys. 73, 3211 (1993).
[33] J. L. Chu and S. Lee: Chemical stresses in composite circular cylinders. J. Appl. Phys. 73, 2239 (1993).
[34] H. Y. Lin, S. C. Ko, and S. Lee: Chemical stresses in boundary layer diffusion. J. Appl. Phys. 96, 6183 (2004).
[35] S. C. Ko, S. Lee, and Y. T. Chou: Chemical stresses in a square sandwich composite. Mater. Sci. Eng. A 409, 145 (2005).
[36] W. L. Wang, Y. T. Chou, and S. Lee: Chemical stresses induced by grain-boundary diffusion. Metall. Mater. Trans. 29A, 2121 (1998).
[37] W. L. Wang, Y. T. Chou, and S. Lee: Chemical stresses induced by grain-boundary diffusion in thin films. J. Mater. Res. 16, 1967 (2001).
[38] J. L. Chu and S. Lee: The effect of chemical stresses on diffusion. J. Appl. Phys. 75, 2823 (1994).
[39] S. C. Ko, T. Y. Zhang, and S. Lee: Influence of chemical stresses in the permeation, one-side and two-side charging processes. J. Appl. Phys. 101, 113521 (2007).
[40] F. Yang: Interaction between diffusion and chemical stresses. Mater. Sci. Eng. A 409, 153 (2005).
[41] R. Deshpande, Y. T. Cheng, and M. W. Verbrugge: Modeling diffusion-induced stress in nanowire electrode structures. J. Pow. Sour. 195, 5081 (2010).
[42] M. Kim and P. Neogi: Concentration-induced stress effects in diffusion of vapors through polymer membranes. J. Appl. Polym. Sci. 29, 731 (1984).
[43] W. L. Wang, J. R. Chen, and S. Lee: Solvent-induced stresses in glassy polymer: Elastic model. J. Mater. Res. 14, 4111 (1999).
[44] W. L Wang: The chemical stresses in solids. PhD Thesis (1999), Chap 9, National Tsing Hua University, Hsinchu, Taiwan.
[45] S. Y. Chou, L. Zhuang, and L. Guo: Lithographically induced self-construction of polymer microstructures for resistless patterning. Appl. Phys. Lett. 75, 1004 (1999).
[46] E. P. Chan and A. J. Crosby: Fabricating microlens arrays by surface wrinkling. Adv. Mater. 18, 3238 (2006).
[47] H. Lee, B. P. Lee, and P. B. Messersmith: A reversible wet/ dry adhesive inspired by mussels and geckos. Nature 448, 338 (2007).
[48] E. P. Chan, E. J. Smith, R. C. Hayward, and A. J. Crosby: Surface wrinkles for smart adhesion. Adv. Mater. 20, 711 (2008).
[49] Tokarev and S. Minko: Stimuli-responsive hydrogel thin films. Soft Matter 5, 511 (2009).
[50] S. R. Quake and A. Scherer: From micro- to nanofabrication with soft materials. Science 290, 1536 (2000).
[51] C. M. Stafford, C. Harrison, K. L. Beers, A. Karim, E. J. Amis, M. R. Vanlandingham, H. C. Kim, W. Volksen, R. D Miller, and E. E. Simonyi: A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nat. Mater. 3, 545 (2004).
[52] J. Huang, M. Juszkiewicz, W. H. de jeu, E. Cerda, T. Emrick, N. Menon, and T. P. Russell: Capillary wrinkling of floating thin polymer films. Science 317, 650 (2007).
[53] N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides: Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393, 146 (1998).
[54] W. T. S. Huck, N. Bowden, P. Onck, T. Pardoen, J. W. Hutchinson, and G. M. Whitesides: Ordering of spontaneously formed buckles on planar surfaces. Langmuir 16, 3497 (2000).
[55] K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, and J. Genzer: Nested self-similar wrinkling patterns in skins. Nat. Mater. 4, 293 (2005).
[56] S. J. Kwon, J. G. Park, and S. H. Lee: Morphological dynamics of swelling-induced surface patterns in metal-capped polymer bilayer. J. Chem. Phys. 122, 031101 (2005).
[57] T. Tanaka, S. T. Sun, Y. Hirokawa, S. Katayama, J. Kucera, Y. Hirose, and T. Amiya: Mechanical instability of gels at the phase transition. Nature 325, 796 (1987).
[58] H. Tanaka, H. Tomita, A. Takasu, T. Hayashi, and T. Nishi: Morphological and kinetic evolution of surface patterns in gels during the swelling process: Evidence of dynamic pattern ordering. Phys. Rev. Lett. 68, 2794 (1992).
[59] J. S. Sharp and R. A. L. Jones: Swelling-induced morphology in ultrathin supported films of poly(d,l-lactide). Phys. Rev. E 66, 011801 (2002).
[60] M. Guvendiren, S. Yang, and J. A. Burdick: Swelling-induced surface patterns in hydrogels with gradient crosslinking density. Adv. Funct. Mater. 19, 3038 (2009).
[61] M. Guvendiren, J. A. Burdick, and S. Yang: Kinetic study of swelling-induced surface pattern formation and ordering in hydrogel films with depth-wise crosslinking gradient. Soft Matter 6, 2044 (2010).
[62] K. Sekimoto and K. Kawasaki: Elastic instability of gels upon swelling. J. Phys. Soc. Jpn. 56, 2997 (1987).
[63] Qnuki: Pattern formation in gels. J. Phys. Soc. Jpn. 57, 703 (1988).
[64] T. Hwa and M. Kardar: Evolution of surface patterns on swelling gels. Phys. Rev. Lett. 61, 106 (1988).
[65] C. K. Liu, C. T. Hu, and S. Lee: Effect of compression and thickness on acetone transport in polycarbonate. Polym. Eng. Sci. 45, 687 (2005).
[66] C. L. Huang: Solvent-induced surface ripple pattern in irradiated polycarbonate. Master Thesis (2007), National Tsing Hua University, Hsinchu, Taiwan.
[67] K. C. Ho: Buffer-induced surface patterns of irradiated poly(2-hydroxyethyl methacrylate). Master Thesis (2010), Appendix, National Tsing Hua University, Hsinchu, Taiwan.
[68] C. B. Lin: Solvent-induced mechanical and physical changes in poly(methyl methacrylate). PhD Thesis (1991), Table 3.2, National Tsing Hua University, Hsinchu, Taiwan.
[69] C. K. Liu: The effect of gamma ray radiation on the physical properties of polymers and their mechanical properties. PhD Thesis (2005), Table 4.1-3, 4.1-4, National Tsing Hua University, Hsinchu, Taiwan.