研究生: |
張哲瑋 Chang, Je-Wei |
---|---|
論文名稱: |
鑲嵌微相分離、配對催化之鉑金屬奈米粒子與磷鎢酸於矽奈米管束陣列中以做為太陽能產氫應用 Development of Hexagonally Arrayed Silicate Nanochannels Intercalated with Photocatalytically Paired and Phase-Segregated Pt-Nanoparticles and Tungstophosphoric Acid for Solar Hydrogen Production |
指導教授: |
鄭有舜
Jeng, U-Ser |
口試委員: |
賴英煌
Lai, Ying-Huang 蘇安仲 Su, An-Chung 呂世源 Lu, Shih-Yuan 莊偉綜 Chuang, Wei-Tsung |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 98 |
中文關鍵詞: | 鉑金屬奈米粒子陣列 、磷鎢酸 、光催化配對 、矽奈米管束陣列 、太陽能產氫 、掠角入射小角度X光散射 |
外文關鍵詞: | Arrayed Pt nanoparticles, Tungstophosphoric Acid, Photocatalytically Paired, Hexagonally Arrayed Silicate Nanochannels, Photocatalytic hydrogen production, Grazing-Incidence Small-Angle X-Ray Scattering |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出了一種新型的開放式奈米通道反應器的設計,於二維六角晶型排列的矽酸鹽奈米通道壁上及孔道內分別佈建磷鎢酸根離子及鉑金屬奈米粒子以作為共催化劑和光催化劑配對堆積形式,並藉此系統實現了高Pt催化效率的太陽能產氫。利用掠角入射小角度X光散射(grazing incidence small-angle X-ray scattering, GISAXS),臨場觀察具自組裝高度有序奈米孔道之二氧化矽薄膜在氣液界面上的形成。由於奈米管壁上鑲嵌了磷鎢酸根離子,此薄膜於隨後的照光中,催化了擴散入矽奈米孔道內的鉑前驅離子的還原與其聚集成奈米粒子。GISAXS觀察到二氧化矽薄膜之孔道-孔道間距的結構變化,揭示出擴散入管道的鉑前驅分子和管道中溴化十六烷基三甲銨模板微胞之陰離子在磷鎢酸根離子的催化下進行離子交換的過程,以及還原的鉑原子於侷限的奈米孔道內聚集成長而隨孔道陣列模板形成高度有序的規則奈米粒子陣列。當以溶液中磷鎢酸根離子為光吸收與電子提供者時,此複合材料可有效進行光產氫催化反應。推測溶液中磷鎢酸根離子照光受激發的高能電子可有效的轉移至孔道內與鉑奈米粒子緊鄰的磷鎢酸根離子,於孔道內進行高效率協同催化而大幅提升產氫效率。再者,中孔二氧化矽的奈米空間反應通道,也可有效控制鉑奈米粒子遷移與聚集、避免遮蔽共催化劑表面與鉑奈米粒子聚集,而被證實能同時達到其系統產氫的高效性與長效性。調控孔道內磷鎢酸根離子分子與鉑奈米粒子數目比例至10:1時,在氙燈照射下此複合材有優化的莫爾共催化劑產氫效率高達6.0 mol•hr-1[Pt]-1,為目前多氧金屬酸系列紀錄的2.5倍。而在AM1.5光源下的產氫效率也仍保有氙燈的10%。進一步利用氧化鎳取代磷鎢酸根離子的WO4+原子團,本研究也接續開發出新型紫外-可見光響應型之鎳修飾磷鎢酸光催化劑,增加可見光光譜利用率。FTIR、UV-Vis吸收光譜與X光吸收光譜鑑定結果證實氧化鎳可取代WO4+進入磷鎢酸根離子陰離子框架內,形成紫外-可見光響應之光催化劑-鎳修飾磷鎢酸分子。當原先系統溶液與催化材中的磷鎢酸根離子皆以鎳修飾磷鎢酸根離子取代時,產氫效率可再有30%的提升。此結果說明鎳修飾磷鎢酸增加可見光吸收範圍而達成提升系統產氫效率。本論文闡述了利用奈米陣列模板孔道反應器設計侷限、有序的奈米空間達到有效配對與配位共催化產氫的想法。
Catalytic phosphotungstic acids (PTA) and onsite-reduced cocatalytic platinum-nanoparticles (Pt-NP) are embedded respectively along the pores and walls of organized silicate nanochannels, forming highly efficient photocatalytic pairs of water splitting reactions. Revealed by in-situ grazing-incidence small-angle X-ray scattering, a free-standing template film comprising hexagonally packed silicate channels with PTA embedded along the channel walls, is self-assembled first at the air-liquid interface. Upon UV illumination, the wall PTA facilitates reduction of the subsequently added Pt precursors for PTA-site-specific Pt reduction inside the silicate nanochannels, followed by formation of ca. 2-nm Pt-NPs near the catalytic PTA sites with an optimized Pt-NP/PTA ratio of 1:10. Such nanochannel-confined photocatalytic pairs, densely and closely packed along the pores and walls of silicate nanochannels demonstrate a sustained cocatalytic efficiency of ~6 mol/hr per mole of Pt under xenon arc lamp irradiation, which is ca. 2.5 times of the current record of Pt-cocatalyst efficiency in water splitting of POM system for solar hydrogen production; the hydrogen production reduces to ca. 10 % under AM-1.5 light source. Further, a modified Ni-ℓPTA, with a corner WO4+ of PTA replaced by Ni2+, is synthesized for enhanced UV-visible light absorption. With all the PTA replaced by Ni-ℓPTA, the solar hydrogen production could be further improved by ca. 30%. The design concept of phase-segregated photocatalytical pairs of Pt NPs and polyoxometate, confined closely and densely in nanochannels, provides a promising direction on elevating Pt efficiency for synergistic photocatalytic reactions.
[1] J. R. Rostrup-Nielsen, J. Sehested, J. K. Nørskov, 2002.
[2] R. M. Navarro, M. Pena, J. Fierro, Chemical reviews 2007, 107, 3952-3991.
[3] D. Gardner, Renewable Energy Focus 2009, 9, 34-37.
[4] A. FUJISHIMA, K. HONDA, Nature 1972, 238, 37.
[5] A. Kudo, Y. Miseki, Chemical Society Reviews 2009, 38, 253-278.
[6] J. Yang, H. Yan, X. Zong, F. Wen, M. Liu, C. Li, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2013, 371, 20110430.
[7] A. Kudo, International Journal of Hydrogen Energy 2006, 31, 197-202.
[8] M. Wang, S. Shen, L. Li, Z. Tang, J. Yang, Journal of materials science 2017, 52, 5155-5164.
[9] P. S. Lunawat, S. Senapati, R. Kumar, N. M. Gupta, International Journal of Hydrogen Energy 2007, 32, 2784-2790.
[10] M. Matsuoka, M. Kitano, M. Takeuchi, K. Tsujimaru, M. Anpo, J. M. Thomas, Catalysis Today 2007, 122, 51-61.
[11] S. Tabata, H. Nishida, Y. Masaki, K. Tabata, Catalysis letters 1995, 34, 245-249.
[12] H. Yan, J. Yang, G. Ma, G. Wu, X. Zong, Z. Lei, J. Shi, C. Li, Journal of Catalysis 2009, 266, 165-168.
[13] G. L. Chiarello, L. Forni, E. Selli, Catalysis Today 2009, 144, 69-74.
[14] P. Gomathisankar, K. Hachisuka, H. Katsumata, T. Suzuki, K. Funasaka, S. Kaneco, ACS Sustainable Chemistry & Engineering 2013, 1, 982-988.
[15] A. Kumar, N. Mathur, Applied Catalysis A: General 2004, 275, 189-197.
[16] G. R. Bamwenda, T. Uesigi, Y. Abe, K. Sayama, H. Arakawa, Applied Catalysis A: General 2001, 205, 117-128.
[17] D. B. Ingram, S. Linic, Journal of the American Chemical Society 2011, 133, 5202-5205.
[18] Y.-C. Pu, G. Wang, K.-D. Chang, Y. Ling, Y.-K. Lin, B. C. Fitzmorris, C.-M. Liu, X. Lu, Y. Tong, J. Z. Zhang, Nano letters 2013, 13, 3817-3823.
[19] C.-C. Lin, T.-Y. Wei, K.-T. Lee, S.-Y. Lu, Journal of Materials Chemistry 2011, 21, 12668-12674.
[20] M. J. Berr, F. F. Schweinberger, M. Döblinger, K. E. Sanwald, C. Wolff, J. Breimeier, A. S. Crampton, C. J. Ridge, M. Tschurl, U. Heiz, Nano letters 2012, 12, 5903-5906.
[21] H. Kato, A. Kudo, The Journal of Physical Chemistry B 2001, 105, 4285-4292.
[22] A. Troupis, E. Gkika, E. Anastasia Hiskia, Papaconstantinou, Comptes Rendus Chimie 2006, 9, 851.
[23] J. J. Berzelius, Annual Review of Physical Chemistry 1826, 6, 380.
[24] J. F. Keggin, Philosophical Transactions of the Royal Society A 1934, 144, 75.
[25] P. A. Jalil, M. Faiz, NTabet, N. M. Hamdan, Z. Hussain, Journal of Catalysis 2003, 317, 292.
[26] A. Troupis, E. Gkika, A. Hiskia, E. Papaconstantinou, Comptes Rendus Chimie 2006, 9, 851.
[27] H. Hori, E. Hayakawa, K. Koike, H. Einaga, T. Ibusuki, Journal of Molecular Catalysis A: Chemical 2004, 211, 35.
[28] M. Pope.
[29] E. Papaconstantinou, Chemical Society Reviews 1989, 18, 1-31.
[30] A. Troupis, A. Hiskia, E. Papaconstantinou, Angewandte Chemie International Edition 2002, 41, 1911-1914.
[31] J. K. Hurst, Science 2010, 328, 315.
[32] Z. Zhang, Q. Lin, S.-T. Zheng, X. Bu, P. Feng, Chemical Communications 2011, 47, 3918-3920.
[33] Z.-X. Yang, P. Huang, L. Zhao, M. Zhang, Y.-T. Zhang, Z.-M. Su, Inorganic Chemistry Communications 2014, 44, 195-197.
[34] Y. Nie, W. Chen, Z. Liu, E. Wang, Inorganic Chemistry Communications 2015, 61, 184-186.
[35] P. Tian, X. He, W. Li, L. Zhao, W. Fang, H. Chen, F. Zhang, W. Zhang, W. Wang, Journal of Materials Science 2018, 53, 12016-12029.
[36] G. Paille, A. Boulmier, A. Bensaid, M.-H. Ha-Thi, T.-T. Tran, T. Pino, J. Marrot, E. Rivière, C. H. Hendon, O. Oms, Chemical Communications 2019, 55, 4166-4169.
[37] H. Lee, V. S. Kumbhar, J. Lee, H. Oh, K. Lee, Catalysis Today 2019.
[38] K. Maeda, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2011, 12, 237-268.
[39] W. Sheng, M. Myint, J. G. Chen, Y. Yan, Energy & Environmental Science 2013, 6, 1509-1512.
[40] M. Sakamoto, A. Xiong, R. Kanakubo, T. Ikeda, T. Yoshinaga, K. Maeda, K. Domen, T. Teranishi, Chemistry Letters 2012, 41, 1325-1327.
[41] S. Cao, J. Jiang, B. Zhu, J. Yu, Physical Chemistry Chemical Physics 2016, 18, 19457-19463.
[42] F. F. Schweinberger, M. J. Berr, M. Döblinger, C. Wolff, K. E. Sanwald, A. S. Crampton, C. J. Ridge, F. Jäckel, J. Feldmann, M. Tschurl, Journal of the American Chemical Society 2013, 135, 13262-13265.
[43] D. V. Esposito, J. G. Chen, Energy & Environmental Science 2011, 4, 3900.
[44] J. Hierrezuelo, A. Sadeghpour, I. Szilagyi, A. Vaccaro, M. Borkovec, Langmuir 2010, 26, 15109-15111.
[45] X.-M. Wang, D.-D. Zhou, Q.-Q. Zou, Y.-Y. Xia, Journal of Materials Chemistry 2012, 22, 15418-15426.
[46] J. Jia, B. Wang, A. Wu, G. Cheng, Z. Li, S. Dong, Analytical Chemistry 2002, 74, 2217-2223.
[47] Z. Jiang, J. Liu, M. Gao, X. Fan, L. Zhang, J. Zhang, Advanced Materials 2017, 29, 1603369.
[48] T. Sun, S. Zhao, W. Chen, D. Zhai, J. Dong, Y. Wang, S. Zhang, A. Han, L. Gu, R. Yu, Proceedings of the National Academy of Sciences 2018, 115, 12692-12697.
[49] J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, J. L. Schlenker, Journal of the American Chemical Society 1992, 114, 10834.
[50] Z. X, Z. C, G. H, H. W, P. T, F. LC, A. DL., Zhang X1, Zhang C, Guo H, Huang W, Polenova T, Francesconi LC, Akins DL. 2005, 109, 19156.
[51] Y. Wan, D. Zhao, Chemical reviews 2007, 107, 2821-2860.
[52] F. Hoffmann, M. Cornelius, J. Morell, M. Fröba, Angewandte Chemie International Edition 2006, 45, 3216-3251.
[53] S. Pevzner, O. Regev, R. Yerushalmi-Rozen, Current opinion in colloid & interface science 1999, 4, 420-427.
[54] Q. Huo, D. Zhao, J. Feng, K. Weston, S. K. Buratto, G. D. Stucky, S. Schacht, F. Schüth, Advanced Materials 1997, 9, 974-978.
[55] H. Yang, N. Coombs, G. A. Ozin, Journal of Materials Chemistry 1998, 8, 1205-1211.
[56] H. Yang, A. Kuperman, N. Coombs, S. Mamiche-Afara, G. A. Ozin, Nature 1996, 379, 703-705.
[57] J. L. Ruggles, S. A. Holt, P. A. Reynolds, J. W. White, Langmuir 2000, 16, 4613.
[58] R. J. White, R. Luque, V. L. Budarin, J. H. Clark, D. J. Macquarrie, Chemical Society Reviews 2009, 38, 481-494.
[59] C. Wang, K. E. DeKrafft, W. Lin, Journal of the American Chemical Society 2012, 134, 7211-7214.
[60] M. Wen, K. Mori, T. Kamegawa, H. Yamashita, Chem. Commun. 2014, 50, 11645-11648.
[61] W. Zhan, L. Sun, X. Han, Nano-Micro Letters 2019, 11, 1.
[62] 鄭有舜, 韋光華, 物理雙月刊,; 2008, 30, P33-41.
[63] Y.-H. Lai, S.-W. Cheng, S.-W. Chen, J.-W. Chang, C.-J. Su, A.-C. Su, H.-S. Sheu, C.-Y. Mou, U.-S. Jeng, RSC advances 2013, 3, 3270-3283.
[64] B. D. Cullity, Elements of X-ray Diffraction, Addison-Wesley Publishing, 1956.
[65] J. M. Cervantes-Uc, J. V. Cauich-Rodríguez, H. Vázquez-Torres, L. F. Garfias-Mesías, D. R. Paul, Thermochimica Acta 2007, 457, 92-102.
[66] J. S. Beck, J. Vartuli, W. J. Roth, M. Leonowicz, C. Kresge, K. Schmitt, C. Chu, D. H. Olson, E. Sheppard, S. McCullen, Journal of the American Chemical Society 1992, 114, 10834-10843.
[67] A. Troupis, E. Gkika, A. Hiskia, E. Papaconstantinou, Comptes Rendus Chimie 2006, 9, 851-857.
[68] G. J. d. A. Soler-Illia, C. Sanchez, B. Lebeau, J. Patarin, Chemical reviews 2002, 102, 4093-4138.
[69] Z. Jiang, Journal of Applied Crystallography 2015, 48, 917-926.
[70] M.-C. Liu, H.-S. Sheu, S. Cheng, Journal of the American Chemical Society 2009, 131, 3998-4005.
[71] G. M. Varga Jr, E. Papaconstantinou, M. T. Pope, Inorganic Chemistry 1970, 9, 662-667.
[72] B. Veisz, Z. Király, Langmuir 2003, 19, 4817-4824.
[73] X. Zeng, X. Xiao, J. Chen, H. Wang, Applied Catalysis B: Environmental 2019, 248, 573-586.
[74] N. Dubouis, A. Grimaud, Chemical Science 2019, 10, 9165-9181.
[75] S. Lu, D. Wang, S. P. Jiang, Y. Xiang, J. Lu, J. Zeng, Advanced Materials 2010, 22, 971-976.
[76] M. Homberger, U. Simon, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2010, 368, 1405-1453.
[77] D. Fernandez, P. Maurer, M. Martine, J. Coey, M. E. Möbius, Langmuir 2014, 30, 13065-13074.
[78] T. Takashima, A. Yamaguchi, K. Hashimoto, R. Nakamura, Chemical Communications 2012, 48, 2964-2966.
[79] K. Suzuki, F. Tang, Y. Kikukawa, K. Yamaguchi, N. Mizuno, Angewandte Chemie International Edition 2014, 53, 5356-5360.
[80] K. Suzuki, M. Sugawa, Y. Kikukawa, K. Kamata, K. Yamaguchi, N. Mizuno, Inorganic chemistry 2012, 51, 6953-6961.
[81] Z. Zhu, R. Tain, C. Rhodes, Canadian journal of chemistry 2003, 81, 1044-1050.
[82] X. Li, Y. Ren, Z. Weng, B. Yue, H. He, Chemical Communications 2020, 56, 2324-2327.
[83] X. Wu, T. Huang, Q. Wu, L. Xu, Dalton Transactions 2016, 45, 271-275.
[84] R. A. Frenzel, G. P. Romanelli, M. N. Blanco, L. R. Pizzio, Journal of Chemical Sciences 2015, 127, 123-132.
[85] K. Pandya, R. Hoffman, J. McBreen, W. O'Grady, Journal of The Electrochemical Society 1990, 137, 383.
[86] D.-Y. Cho, S. J. Song, U. K. Kim, K. M. Kim, H.-K. Lee, C. S. Hwang, Journal of Materials Chemistry C 2013, 1, 4334-4338.
[87] S. Kalainathan, N. Ahsan, T. Hoshii, Y. Okada, T. Logu, K. Sethuraman, Journal of Materials Science: Materials in Electronics 2018, 29, 19359-19367.
[88] T. H. Gfroerer, Encyclopedia of analytical chemistry: applications, theory and instrumentation 2006.
[89] T. D. Martins, A. C. C. Ribeiro, G. A. de Souza, D. de Sousa Cordeiro, R. M. Silva, F. Colmati, R. B. de Lima, L. F. Aguiar, L. L. Carvalho, R. G. C. S. dos Reis, Advanced Chemical Kinetics 2018, 57.
[90] F. Strieth-Kalthoff, M. J. James, M. Teders, L. Pitzer, F. Glorius, Chemical Society Reviews 2018, 47, 7190-7202.
[91] T. Förster, Annalen der physik 1948, 437, 55-75.
[92] D. L. Dexter, The journal of chemical physics 1953, 21, 836-850.