簡易檢索 / 詳目顯示

研究生: 莊正傑
Chuang, Cheng-Chieh
論文名稱: 可撓式磷硫化合物/石墨烯複合物做為高體積電容量鋰硫電池正極材料
A Flexible Sheet of Phosphorus-Sulfur/Graphene Composites with Super High Volumetric Capacity Cathode for Lithium-Sulfur Batteries
指導教授: 段興宇
Tuan, Hsing-Yu
口試委員: 周更生
Chou, Kan-Sen
曾院介
Tseng, Yuan-Chieh
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 35
中文關鍵詞: 鋰硫電池可撓體積電容量
外文關鍵詞: self-supporting, volumetric capacity
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高硫負載量是目前能夠實現高能量密度鋰硫電池的重要研究方向。但是,高硫負載量不可避免的會造成硫正極的厚度增加,從而產生低體積電容量的新挑戰。本研究,我們成功以簡易的一步合成法,製作出一種自支撐可撓性磷硫化合物混石墨烯的複合材料,它可以很容易的輾壓並製成小薄片,並可以直接用做新穎的高密度(1.8 g cm-3)硫正極。此材料硫單位面積含量高達6〜10 mg cm-2且硫含量為80%的正極,在電化學測試下,不僅具有優異的循環性能(在200次循環中硫的利用率為57%,每次循環容量衰減率為0.15%),而且還提供了克電量(959 mA h g 1)和面電量(5.5 mA h cm-2)。此外,根據近年相關高負載量的文獻,體積電容量(1901 mA h cm-3)是目前所見之最高紀錄。


    High sulfur loading is a currently significant research to achieve the high energy density lithium sulfur battery. However, the high sulfur loading leads to increase the thickness of sulfur cathode creating the new challenge of low volumetric capacity. Here, we report a simple synthesis of self-supported flexible phosphorus-sulfur/graphene composites (PS/G composites), which can be easily pressed into sheet and can use directly as novel high dense (1.8 g cm-3) sulfur cathode. The cathode with high sulfur loading of 6 ~ 10 mg cm-2 and sulfur content of 80% not only delivers great stability cycling performance (57% of sulfur utilization and capacity fading rate 0.15%/cycle within 200 cycles), but also provides a excellent specific (959 mA h g-1) and areal (5.5 mA h cm-2) capacities. Remarkably, the corresponding volumetric capacity (1901 mA h cm-3) present the highest volumetric capacity, which is record high based on recently report, revealing a great potential for high energy density flexible lithium-sulfur battery.

    Table of contents Abstract--------------------------------------------------I 中文摘要 -----------------------------------------------II Table of contents-----------------------------------------III List of Figure--------------------------------------------IV List of Tables--------------------------------------------V Chapter 1. Introduction -------------------------------1 Development of Lithium-sulfur batteries-------------------1 Lithium-sulfur batteries : challenges---------------------4 The effect of electrolyte in Li-S batteries---------------8 Phosphorus sulfide molecules materials as sulfur cathode--12 Chapter 2. Experimental Section---------------------------14 Materials-------------------------------------------------14 Preparation of PS compounds-------------------------------14 Preparation of PS/G composites----------------------------14 Material Characterization---------------------------------15 Electrochemical characterization--------------------------15 Chapter 3. Result and discussion--------------------------16 Chapter 4. Conclusion-------------------------------------29 Reference-------------------------------------------------30

    1. Herbert, D.; Ulam, J., US Patent 3,043,896 (1962). German Patent 1962, 1.
    2. Ji, X.; Lee, K. T.; Nazar, L. F., A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nature materials 2009, 8 (6), 500.
    3. Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G., Li-ion battery materials: present and future. Materials today 2015, 18 (5), 252-264.
    4. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J.-M., Li-O2 and Li-S batteries with high energy storage. Nature materials 2012, 11 (1), 19.
    5. Wang, D.-W.; Zeng, Q.; Zhou, G.; Yin, L.; Li, F.; Cheng, H.-M.; Gentle, I. R.; Lu, G. Q. M., Carbon–sulfur composites for Li–S batteries: status and prospects. Journal of Materials Chemistry A 2013, 1 (33), 9382-9394.
    6. Liang, J.; Sun, Z.-H.; Li, F.; Cheng, H.-M., Carbon materials for Li–S batteries: Functional evolution and performance improvement. Energy Storage Materials 2016, 2, 76-106.
    7. Manthiram, A.; Fu, Y.; Su, Y.-S., Challenges and prospects of lithium–sulfur batteries. Accounts of chemical research 2012, 46 (5), 1125-1134.
    8. Armand, M.; Tarascon, J.-M., Building better batteries. Nature 2008, 451 (7179), 652-657.
    9. Seh, Z. W.; Sun, Y.; Zhang, Q.; Cui, Y., Designing high-energy lithium–sulfur batteries. Chemical Society Reviews 2016, 45 (20), 5605-5634.
    10. Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J., Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angewandte Chemie International Edition 2013, 52 (50), 13186-13200.
    11. Evers, S.; Nazar, L. F., New approaches for high energy density lithium–sulfur battery cathodes. Accounts of chemical research 2012, 46 (5), 1135-1143.
    12. Manthiram, A.; Fu, Y.; Chung, S.-H.; Zu, C.; Su, Y.-S., Rechargeable lithium–sulfur batteries. Chemical reviews 2014, 114 (23), 11751-11787.
    13. Ma, L.; Hendrickson, K. E.; Wei, S.; Archer, L. A., Nanomaterials: Science and applications in the lithium–sulfur battery. Nano Today 2015, 10 (3), 315-338.
    14. MetalPrices.com (2014).
    15. InfoMine, Mining Intelligence and Technology, 2014.
    16. Metal Bulletin, Global Metal News, Metal Prices & Analysis, 2014.
    17. USGS, Minerals Information, 1932–2013.
    18. S. Moores, How is Natural Graphite Priced? Industrial Minerals, 2013.
    19. Sulfur Price, National Iranian Gas Company, 2014.
    20. Yang, Y.; Zheng, G.; Cui, Y., Nanostructured sulfur cathodes. Chemical Society Reviews 2013, 42 (7), 3018-3032.
    21. Adelhelm, P.; Hartmann, P.; Bender, C. L.; Busche, M.; Eufinger, C.; Janek, J., From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries. Beilstein journal of nanotechnology 2015, 6, 1016.
    22. Su, Y.-S.; Fu, Y.; Cochell, T.; Manthiram, A., A strategic approach to recharging lithium-sulphur batteries for long cycle life. Nature communications 2013, 4, 2985.
    23. Ji, X.; Nazar, L. F., Advances in Li–S batteries. Journal of Materials Chemistry 2010, 20 (44), 9821-9826.
    24. Yang, Y.; Zheng, G.; Cui, Y., A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage. Energy & Environmental Science 2013, 6 (5), 1552-1558.
    25. Rauh, R.; Abraham, K.; Pearson, G.; Surprenant, J.; Brummer, S., A lithium/dissolved sulfur battery with an organic electrolyte. Journal of the Electrochemical Society 1979, 126 (4), 523-527.
    26. Yamin, H.; Peled, E., Electrochemistry of a nonaqueous lithium/sulfur cell. Journal of Power Sources 1983, 9 (3), 281-287.
    27. Barchasz, C.; Leprêtre, J.-C.; Patoux, S.; Alloin, F., Electrochemical properties of ether-based electrolytes for lithium/sulfur rechargeable batteries. Electrochimica Acta 2013, 89, 737-743.
    28. Chu, M.-Y.; De Jonghe, L. C.; Visco, S. J.; Katz, B. D., Liquid electrolyte lithium-sulfur batteries. Google Patents: 2000.
    29. Zhang, S. S., Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. Journal of Power Sources 2013, 231, 153-162.
    30. Su, Y.-S.; Manthiram, A., A facile in situ sulfur deposition route to obtain carbon-wrapped sulfur composite cathodes for lithium–sulfur batteries. Electrochimica Acta 2012, 77, 272-278.
    31. Mikhaylik, Y. V.; Akridge, J. R., Polysulfide shuttle study in the Li/S battery system. Journal of the Electrochemical Society 2004, 151 (11), A1969-A1976.
    32. Barchasz, C.; Leprêtre, J.-C.; Alloin, F.; Patoux, S., New insights into the limiting parameters of the Li/S rechargeable cell. Journal of Power Sources 2012, 199, 322-330.
    33. Aurbach, D.; Pollak, E.; Elazari, R.; Salitra, G.; Kelley, C. S.; Affinito, J., On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. Journal of The Electrochemical Society 2009, 156 (8), A694-A702.
    34. Cao, R.; Xu, W.; Lv, D.; Xiao, J.; Zhang, J. G., Anodes for Rechargeable Lithium‐Sulfur Batteries. Advanced Energy Materials 2015, 5 (16).
    35. Demir-Cakan, R.; Morcrette, M.; Guéguen, A.; Dedryvère, R.; Tarascon, J.-M., Li–S batteries: simple approaches for superior performance. Energy & Environmental Science 2013, 6 (1), 176-182.
    36. Busche, M. R.; Adelhelm, P.; Sommer, H.; Schneider, H.; Leitner, K.; Janek, J., Systematical electrochemical study on the parasitic shuttle-effect in lithium-sulfur-cells at different temperatures and different rates. Journal of Power Sources 2014, 259, 289-299.
    37. Kim, H.; Lee, J. T.; Yushin, G., High temperature stabilization of lithium–sulfur cells with carbon nanotube current collector. Journal of Power Sources 2013, 226, 256-265.
    38. Lu, D.; Shao, Y.; Lozano, T.; Bennett, W. D.; Graff, G. L.; Polzin, B.; Zhang, J.; Engelhard, M. H.; Saenz, N. T.; Henderson, W. A., Failure mechanism for fast‐charged lithium metal batteries with liquid electrolytes. Advanced Energy Materials 2015, 5 (3).
    39. Chen, H.; Wang, C.; Dong, W.; Lu, W.; Du, Z.; Chen, L., Monodispersed sulfur nanoparticles for lithium–sulfur batteries with theoretical performance. Nano letters 2014, 15 (1), 798-802.
    40. Li, G.; Li, Z.; Zhang, B.; Lin, Z., Developments of electrolyte systems for lithium–sulfur batteries: a review. Frontiers in Energy Research 2015, 3, 5.
    41. Scheers, J.; Fantini, S.; Johansson, P., A review of electrolytes for lithium–sulphur batteries. Journal of Power Sources 2014, 255, 204-218.
    42. Gao, J.; Lowe, M. A.; Kiya, Y.; Abruña, H. c. D., Effects of liquid electrolytes on the charge–discharge performance of rechargeable lithium/sulfur batteries: electrochemical and in-situ X-ray absorption spectroscopic studies. The Journal of Physical Chemistry C 2011, 115 (50), 25132-25137.
    43. Yim, T.; Park, M.-S.; Yu, J.-S.; Kim, K. J.; Im, K. Y.; Kim, J.-H.; Jeong, G.; Jo, Y. N.; Woo, S.-G.; Kang, K. S., Effect of chemical reactivity of polysulfide toward carbonate-based electrolyte on the electrochemical performance of Li–S batteries. Electrochimica Acta 2013, 107, 454-460.
    44. Choi, J.-W.; Kim, J.-K.; Cheruvally, G.; Ahn, J.-H.; Ahn, H.-J.; Kim, K.-W., Rechargeable lithium/sulfur battery with suitable mixed liquid electrolytes. Electrochimica Acta 2007, 52 (5), 2075-2082.
    45. Kodama, D.; Kanakubo, M.; Kokubo, M.; Hashimoto, S.; Nanjo, H.; Kato, M., Density, viscosity, and solubility of carbon dioxide in glymes. Fluid Phase Equilibria 2011, 302 (1), 103-108.
    46. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical reviews 2004, 104 (10), 4303-4418.
    47. Foropoulos Jr, J.; DesMarteau, D. D., Synthesis, properties, and reactions of bis ((trifluoromethyl) sulfonyl) imide,(CF3SO2) 2NH. Inorganic Chemistry 1984, 23 (23), 3720-3723.
    48. Xu, G.; Ding, B.; Pan, J.; Nie, P.; Shen, L.; Zhang, X., High performance lithium–sulfur batteries: Advances and challenges. Journal of Materials Chemistry A 2014, 2 (32), 12662-12676.
    49. Zhang, S. S.; Read, J. A., A new direction for the performance improvement of rechargeable lithium/sulfur batteries. Journal of Power Sources 2012, 200, 77-82.
    50. Mikhaylik, Y. V.; Kovalev, I.; Schock, R.; Kumaresan, K.; Xu, J.; Affinito, J., High energy rechargeable Li-S cells for EV application: status, remaining problems and solutions. Ecs Transactions 2010, 25 (35), 23-34.
    51. Xiong, S.; Xie, K.; Diao, Y.; Hong, X., On the role of polysulfides for a stable solid electrolyte interphase on the lithium anode cycled in lithium–sulfur batteries. Journal of Power Sources 2013, 236, 181-187.
    52. Lin, Z.; Liu, Z.; Fu, W.; Dudney, N. J.; Liang, C., Phosphorous pentasulfide as a novel additive for high‐performance lithium‐sulfur batteries. Advanced Functional Materials 2013, 23 (8), 1064-1069.
    53. Ozturk, T.; Ertas, E.; Mert, O., A berzelius reagent, phosphorus decasulfide (P4S10), in organic syntheses. Chemical reviews 2010, 110 (6), 3419-3478.
    54. Li, X.; Liang, J.; Lu, Y.; Hou, Z.; Cheng, Q.; Zhu, Y.; Qian, Y., Sulfur‐Rich Phosphorus Sulfide Molecules for Use in Rechargeable Lithium Batteries. Angewandte Chemie International Edition 2017, 56 (11), 2937-2941.
    55. Chang, W.-C.; Tseng, K.-W.; Tuan, H.-Y., Solution synthesis of iodine-doped red phosphorus nanoparticles for lithium-ion battery anodes. Nano letters 2017, 17 (2), 1240-1247.
    56. Zhang, Y.; Rui, X.; Tang, Y.; Liu, Y.; Wei, J.; Chen, S.; Leow, W. R.; Li, W.; Liu, Y.; Deng, J., Wet‐Chemical Processing of Phosphorus Composite Nanosheets for High‐Rate and High‐Capacity Lithium‐Ion Batteries. Advanced Energy Materials 2016, 6 (10).
    57. Quan, B.; Yu, S.-H.; Chung, D. Y.; Jin, A.; Park, J. H.; Sung, Y.-E.; Piao, Y., Single source precursor-based solvothermal synthesis of heteroatom-doped graphene and its energy storage and conversion applications. Scientific reports 2014, 4, 5639.
    58. Dong, H.; Liu, C.; Ye, H.; Hu, L.; Fugetsu, B.; Dai, W.; Cao, Y.; Qi, X.; Lu, H.; Zhang, X., Three-dimensional nitrogen-doped graphene supported molybdenum disulfide nanoparticles as an advanced catalyst for hydrogen evolution reaction. Scientific reports 2015, 5, 17542.
    59. Ong, K. K.; Jensen, J. O.; Hameka, H. F., Theoretical studies of the infrared and Raman spectra of perylene. Journal of Molecular Structure: THEOCHEM 1999, 459 (1-3), 131-144.
    60. Jensen, J.; Zeroka, D.; Banerjee, A., Theoretical studies of the infrared and Raman spectra of P4S3 and P4S7. Journal of Molecular Structure: THEOCHEM 2000, 505 (1-3), 31-43.
    61. Nagata, H.; Chikusa, Y., Transformation of P2S5 into a Solid Electrolyte with Ionic Conductivity at the Positive Composite Electrode of All‐Solid‐State Lithium–Sulfur Batteries. Energy Technology 2014, 2 (9‐10), 753-756.
    62. Pimenta, M.; Dresselhaus, G.; Dresselhaus, M. S.; Cancado, L.; Jorio, A.; Saito, R., Studying disorder in graphite-based systems by Raman spectroscopy. Physical chemistry chemical physics 2007, 9 (11), 1276-1290.
    63. Ferrari, A. C.; Meyer, J.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.; Roth, S., Raman spectrum of graphene and graphene layers. Physical review letters 2006, 97 (18), 187401.
    64. Ji, X.; Lee, K. T.; Nazar, L. F., A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nature materials 2009, 8 (6), 500.
    65. Hu, C.; Kirk, C.; Cai, Q.; Cuadrado‐Collados, C.; Silvestre‐Albero, J.; Rodríguez‐Reinoso, F.; Biggs, M. J., A High‐Volumetric‐Capacity Cathode Based on Interconnected Close‐Packed N‐Doped Porous Carbon Nanospheres for Long‐Life Lithium–Sulfur Batteries. Advanced Energy Materials 2017, 7 (22).
    66. Chung, S.-H.; Chang, C.-H.; Manthiram, A., A Carbon-Cotton Cathode with Ultrahigh-Loading Capability for Statically and Dynamically Stable Lithium–Sulfur Batteries. ACS nano 2016, 10 (11), 10462-10470.
    67. Li, M.; Zhang, Y.; Hassan, F.; Ahn, W.; Wang, X.; Liu, W. W.; Jiang, G.; Chen, Z., Compact high volumetric and areal capacity lithium sulfur batteries through rock salt induced nano-architectured sulfur hosts. Journal of Materials Chemistry A 2017, 5 (40), 21435-21441.
    68. Fang, R.; Zhao, S.; Hou, P.; Cheng, M.; Wang, S.; Cheng, H. M.; Liu, C.; Li, F., 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li–S batteries. Advanced materials 2016, 28 (17), 3374-3382.
    69. Fang, R.; Zhao, S.; Pei, S.; Qian, X.; Hou, P.-X.; Cheng, H.-M.; Liu, C.; Li, F., Toward more reliable lithium–sulfur batteries: An all-graphene cathode structure. ACS nano 2016, 10 (9), 8676-8682.
    70. Peng, H. J.; Xu, W. T.; Zhu, L.; Wang, D. W.; Huang, J. Q.; Cheng, X. B.; Yuan, Z.; Wei, F.; Zhang, Q., 3D Carbonaceous Current Collectors: The Origin of Enhanced Cycling Stability for High‐Sulfur‐Loading Lithium–Sulfur Batteries. Advanced Functional Materials 2016, 26 (35), 6351-6358.
    71. Yuan, Z.; Peng, H. J.; Huang, J. Q.; Liu, X. Y.; Wang, D. W.; Cheng, X. B.; Zhang, Q., Hierarchical Free‐Standing Carbon‐Nanotube Paper Electrodes with Ultrahigh Sulfur‐Loading for Lithium–Sulfur Batteries. Advanced Functional Materials 2014, 24 (39), 6105-6112.
    72. Chung, S.-H.; Chang, C.-H.; Manthiram, A., A core–shell electrode for dynamically and statically stable Li–S battery chemistry. Energy & Environmental Science 2016, 9 (10), 3188-3200.
    73. Pang, Q.; Liang, X.; Kwok, C. Y.; Kulisch, J.; Nazar, L. F., A comprehensive approach toward stable lithium–sulfur batteries with high volumetric energy density. Advanced Energy Materials 2017, 7 (6).
    74. Qie, L.; Zu, C.; Manthiram, A., A High Energy Lithium‐Sulfur Battery with Ultrahigh‐Loading Lithium Polysulfide Cathode and its Failure Mechanism. Advanced Energy Materials 2016, 6 (7).
    75. Hu, G.; Xu, C.; Sun, Z.; Wang, S.; Cheng, H. M.; Li, F.; Ren, W., 3D Graphene‐Foam–Reduced‐Graphene‐Oxide Hybrid Nested Hierarchical Networks for High‐Performance Li–S Batteries. Advanced materials 2016, 28 (8), 1603-1609.
    76. Mao, Y.; Li, G.; Guo, Y.; Li, Z.; Liang, C.; Peng, X.; Lin, Z., Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium–sulfur batteries. Nature communications 2017, 8, 14628.

    QR CODE