研究生: |
連培均 Lien, Pei-Chun |
---|---|
論文名稱: |
人類嗜酸性白血球陽離子蛋白對支氣管發炎之調控作用 Regulatory effects of human eosinophil cationic protein in airway inflammation |
指導教授: |
張大慈
Chang, Margaret Dah-Tsyr |
口試委員: |
劉承賢
李岡遠 林立元 張嘉銘 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 110 |
中文關鍵詞: | 支氣管發炎 、肺部纖維化 、纖維細胞 、嗜酸性白血球陽離子蛋白 、細胞激素 、肺部發炎 |
外文關鍵詞: | pulmonary fibrosis, fibrocytes |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
許多因子參與肺部及支氣管發炎反應的過程,例如肺部感染、自體免疫疾病、吸入有害化學氣體或溶劑、放射線治療、及其他不明的原因均與發炎反應相關,甚至引發肺部及支氣管纖維化。其中,氣喘病程中嗜酸性白血球(eosinophil)引發之發炎反應會釋放嗜酸性白血球陽離子蛋白(eosinophil cationic protein; ECP)造成支氣管表皮細胞纖維化。目前已知ECP能與細胞表面醣胺多醣(glycosaminoglycan),特別是硫酸乙醯肝素蛋白聚醣(heparan sulfate proteoglycans)結合,並透過巨胞飲(macropinocytosis)作用進入人類支氣管上皮細胞。近年研究顯示纖維細胞(fibrocyte)與發炎反應的細胞激素產生吸引作用,導致肺部纖維化。已知急性發炎細胞激素CXCL-12會和纖維細胞之CXCR4受體結合,進而引發纖維細胞的遷移。本研究探討ECP進入細胞後引發的發炎反應,利用即時聚合酶鏈鎖反應(real-time PCR)以及酵素免疫分析法(ELISA)偵測受到ECP刺激的支氣管上皮細胞中細胞激素基因以及蛋白質表現。此外,亦利用細胞穿透試驗(Transwell assay)及微流體晶片(micro-fluidic chip system)實驗測試纖維細胞在發炎環境的趨性,並模擬人類支氣管發炎反應之微環境改變,發現微流體晶片在實驗效率上優於傳統的細胞穿透試驗。本研究顯示在人類支氣管上皮細胞中加入ECP刺激可明顯促進CXCL-12基因及蛋白質表現,更進一步於微流體晶片系統觀察到纖維細胞朝向支氣管上皮細胞遷移的趨性。我們建立一套體外模擬人體血液的循環系統、探討其發炎反應之現象、並發現ECP在支氣管發炎反應中扮演之關鍵角色。
Inflammatory processes related to lung involve multiple factors which may lead to pulmonary fibrosis and lung scarring. Among which asthma causes subepithelial fibrosis in the airway, an eosinophil inflammation process induced by human eosinophil cationic protein (hECP). Our lab has demonstrated that ECP binds cell surface glycosaminoglycan (GAGs), especially heparan sulfate proteoglycans (HSPGs) on bronchial epithelial cells and enters the cells by macropinocytosis. In addition, recent reports indicate that circulating cells (i.e., the fibrocytes) contributing to the evolution of pulmonary fibrosis are induced by increased expression of certain cytokines. For example, an inflammation cytokine CXCL-12, a ligand for CXCR-4, involves in recruitment of fibrocyte to the lung. In this study, the question is what the influence is when ECP enters Beas-2B cells and induces inflammatory response. Here mRNA and protein expression variation of cytokines in Beas-2B cells upon stimulation with ECP was respectively determined by real-time PCR and ELISA. The chemotaxis of fibrocyte under ECP induced lung inflammation was mimicked by transwell and micro-fluidic chip system to monitor microenvironmental changes. Upon treatment with recombinant ECP, both mRNA and protein expression levels of CXCL-12 increased in a dose- and time-dependent manner. Interestingly, fibrocyte were recruited towards Beas-2B cells in both transwell and micro-fluidic lab chip systems, but the latter showed higher efficiency than the former. In summary, we have established a novel in vitro biomimetic microsystem to simulate blood circulation in the body by monitoring microenvironmental changes and mechanisms of inflammatory process. ECP induced CXCL-12 expression plays a critical role in airway inflammation and pulmonary fibrosis.
1. Dyer, K. D., and Rosenberg, H. F. (2006) The RNase a superfamily: generation of diversity and innate host defense, Mol Divers 10, 585-597.
2. Rosenberg, H. F. (2008) RNase A ribonucleases and host defense: an evolving story, J Leukoc Biol 83, 1079-1087.
3. Cho, S., Beintema, J. J., and Zhang, J. (2005) The ribonuclease A superfamily of mammals and birds: identifying new members and tracing evolutionary histories, Genomics 85, 208-220.
4. Findlay, D., Herries, D. G., Mathias, A. P., Rabin, B. R., and Ross, C. A. (1961) The active site and mechanism of action of bovine pancreatic ribonuclease, Nature 190, 781-784.
5. Boix, E., and Nogues, M. V. (2007) Mammalian antimicrobial proteins and peptides: overview on the RNase A superfamily members involved in innate host defence, Mol Biosyst 3, 317-335.
6. Pizzo, E., Varcamonti, M., Di Maro, A., Zanfardino, A., Giancola, C., and D'Alessio, G. (2008) Ribonucleases with angiogenic and bactericidal activities from the Atlantic salmon, FEBS J 275, 1283-1295.
7. McEwen, B. J. (1992) Eosinophils: a review, Vet Res Commun 16, 11-44.
8. Yang, D., Chertov, O., and Oppenheim, J. J. (2001) The role of mammalian antimicrobial peptides and proteins in awakening of innate host defenses and adaptive immunity, Cell Mol Life Sci 58, 978-989.
9. Amin, K., Ludviksdottir, D., Janson, C., Nettelbladt, O., Bjornsson, E., Roomans, G. M., Boman, G., Seveus, L., and Venge, P. (2000) Inflammation and structural changes in the airways of patients with atopic and nonatopic asthma. BHR Group, Am J Respir Crit Care Med 162, 2295-2301.
10. Kato, M., Kephart, G. M., Talley, N. J., Wagner, J. M., Sarr, M. G., Bonno, M., McGovern, T. W., and Gleich, G. J. (1998) Eosinophil infiltration and degranulation in normal human tissue, Anat Rec 252, 418-425.
11. Press, M. F., and King, W. J. (1986) Distribution of peroxidase and granulocytes in the human uterus, Lab Invest 54, 188-203.
12. Gouon-Evans, V., Lin, E. Y., and Pollard, J. W. (2002) Requirement of macrophages and eosinophils and their cytokines/chemokines for mammary gland development, Breast Cancer Res 4, 155-164.
13. Leiferman, K. M., Peters, M. S., and Gleich, G. J. (1986) The eosinophil and cutaneous edema, J Am Acad Dermatol 15, 513-517.
14. Muller, E. (1977) Localization of eosinophils in the thymus by the peroxidase reaction, Histochemistry 52, 273-279.
15. Silberstein, D. S. (1995) Eosinophil function in health and disease, Crit Rev Oncol Hematol 19, 47-77.
16. Trivedi, S. G., and Lloyd, C. M. (2007) Eosinophils in the pathogenesis of allergic airways disease, Cell Mol Life Sci 64, 1269-1289.
17. MallorquI-Fernández, G., Pous, J., Peracaula, R., AymamI, J., Maeda, T., Tada, H., Yamada, H., Seno, M., de Llorens, R., Gomis-Rüth, F. X., and Coll, M. (2000) Three-dimensional crystal structure of human eosinophil cationic protein (RNase 3) at 1.75 Å resolution, Journal of Molecular Biology 300, 1297-1307.
18. Woschnagg, C., Rubin, J., and Venge, P. (2009) Eosinophil cationic protein (ECP) is processed during secretion, J Immunol 183, 3949-3954.
19. Hamann, K. J., Ten, R. M., Loegering, D. A., Jenkins, R. B., Heise, M. T., Schad, C. R., Pease, L. R., Gleich, G. J., and Barker, R. L. (1990) Structure and chromosome localization of the human eosinophil-derived neurotoxin and eosinophil cationic protein genes: evidence for intronless coding sequences in the ribonuclease gene superfamily, Genomics 7, 535-546.
20. Durack, D. T., Ackerman, S. J., Loegering, D. A., and Gleich, G. J. (1981) Purification of human eosinophil-derived neurotoxin, Proc Natl Acad Sci U S A 78, 5165-5169.
21. Rosenberg, H. F., Tenen, D. G., and Ackerman, S. J. (1989) Molecular cloning of the human eosinophil-derived neurotoxin: a member of the ribonuclease gene family, Proc Natl Acad Sci U S A 86, 4460-4464.
22. Rosenberg, H. F. (1998) The eosinophil ribonucleases, Cell Mol Life Sci 54, 795-803.
23. Slifman, N. R., Loegering, D. A., McKean, D. J., and Gleich, G. J. (1986) Ribonuclease activity associated with human eosinophil-derived neurotoxin and eosinophil cationic protein, J Immunol 137, 2913-2917.
24. Barker, R., Loegering, D., Ten, R., Hamann, K., Pease, L., and Gleich, G. (1989) Eosinophil cationic protein cDNA. Comparison with other toxic cationic proteins and ribonucleases., Journal of Immunology 143, 952-955.
25. Boix, E., Torrent, M., Sanchez, D., and Nogues, M. V. (2008) The antipathogen activities of eosinophil cationic protein, Curr Pharm Biotechnol 9, 141-152.
26. Venge, P., Bystrom, J., Carlson, M., Hakansson, L., Karawacjzyk, M., Peterson, C., Seveus, L., and Trulson, A. (1999) Eosinophil cationic protein (ECP): molecular and biological properties and the use of ECP as a marker of eosinophil activation in disease, Clin Exp Allergy 29, 1172-1186.
27. Khakzad, M. R., Mirsadraee, M., Sankian, M., Varasteh, A., and Meshkat, M. (2009) Is serum or sputum eosinophil cationic protein level adequate for diagnosis of mild asthma?, Iran J Allergy Asthma Immunol 8, 155-160.
28. Koh, G. C., Shek, L. P., Goh, D. Y., Van Bever, H., and Koh, D. S. (2007) Eosinophil cationic protein: is it useful in asthma? A systematic review, Respir Med 101, 696-705.
29. Niccoli, G., Ferrante, G., Cosentino, N., Conte, M., Belloni, F., Marino, M., Baca, M., Montone, R. A., Sabato, V., Schiavino, D., Patriarca, G., and Crea, F. Eosinophil cationic protein: A new biomarker of coronary atherosclerosis, Atherosclerosis 211, 606-611.
30. Venge, P. (2004) Monitoring the allergic inflammation, Allergy 59, 26-32.
31. Koller, D. Y. (2000) Sampling methods: urine/blood analysis, Am J Respir Crit Care Med 162, S31-33.
32. Badar, A., Saeed, W., Hussain, M. M., and Aslam, M. (2004) Correlation of eosinophil cationic protein with severity of asthma, J Ayub Med Coll Abbottabad 16, 66-71.
33. Solarewicz-Madejek, K., Basinski, T. M., Crameri, R., Akdis, M., Akkaya, A., Blaser, K., Rabe, K. F., Akdis, C. A., and Jutel, M. (2009) T cells and eosinophils in bronchial smooth muscle cell death in asthma, Clin Exp Allergy 39, 845-855.
34. Fan, T. C., Chang, H. T., Chen, I. W., Wang, H. Y., and Chang, M. D. (2007) A heparan sulfate-facilitated and raft-dependent macropinocytosis of eosinophil cationic protein, Traffic 8, 1778-1795.
35. Carreras, E., Boix, E., Navarro, S., Rosenberg, H. F., Cuchillo, C. M., and Nogues, M. V. (2005) Surface-exposed amino acids of eosinophil cationic protein play a critical role in the inhibition of mammalian cell proliferation, Mol Cell Biochem 272, 1-7.
36. Reichelt, P., Schwarz, C., and Donzeau, M. (2006) Single step protocol to purify recombinant proteins with low endotoxin contents, Protein Expr Purif 46, 483-488.
37. Boix, E., Nikolovski, Z., Moiseyev, G. P., Rosenberg, H. F., Cuchillo, C. M., and Nogues, M. V. (1999) Kinetic and product distribution analysis of human eosinophil cationic protein indicates a subsite arrangement that favors exonuclease-type activity, J Biol Chem 274, 15605-15614.
38. Prydz, K., and Dalen, K. T. (2000) Synthesis and sorting of proteoglycans, Journal of Cell Science 113, 193-205.
39. Sasisekharan, R., Shriver, Z., Venkataraman, G., and Narayanasami, U. (2002) Roles of heparan-sulphate glycosaminoglycans in cancer, Nat Rev Cancer 2, 521-528.
40. Hacker, U., Nybakken, K., and Perrimon, N. (2005) Heparan sulphate proteoglycans: the sweet side of development, Nat Rev Mol Cell Biol 6, 530-541.
41. Mulloy, B., and Linhardt, R. J. (2001) Order out of complexity - protein structures that interact with heparin, Current Opinion in Structural Biology 11, 623-628.
42. Gandhi, N. S., and Mancera, R. L. (2008) The Structure of Glycosaminoglycans and their Interactions with Proteins, Chem Biol Drug Des 72, 455-482.
43. Asundi, V. K., Keister, B. F., Stahl, R. C., and Carey, D. J. (1997) Developmental and cell-type-specific expression of cell surface heparan sulfate proteoglycans in the rat heart, Exp Cell Res 230, 145-153.
44. David, G. (1990) Heparan sulphate proteoglycans of human fibroblasts, Biochem Soc Trans 18, 805-807.
45. Karthikeyan, L., Maurel, P., Rauch, U., Margolis, R. K., and Margolis, R. U. (1992) Cloning of a Major Heparan-Sulfate Proteoglycan from Brain and Identification as the Rat Form of Glypican, Biochem Bioph Res Co 188, 395-401.
46. Hileman, R. E., Fromm, J. R., Weiler, J. M., and Linhardt, R. J. (1998) Glycosaminoglycan-protein interactions: definition of consensus sites in glycosaminoglycan binding proteins, Bioessays 20, 156-167.
47. Capila, I., and Linhardt, R. J. (2002) Heparin-protein interactions, Angew Chem Int Ed Engl 41, 391-412.
48. Dreyfuss, J. L., Regatieri, C. V., Jarrouge, T. R., Cavalheiro, R. P., Sampaio, L. O., and Nader, H. B. (2009) Heparan sulfate proteoglycans: structure, protein interactions and cell signaling, An Acad Bras Cienc 81, 409-429.
49. Gleich, G. J., Loegering, D. A., Bell, M. P., Checkel, J. L., Ackerman, S. J., and McKean, D. J. (1986) Biochemical and functional similarities between human eosinophil-derived neurotoxin and eosinophil cationic protein: homology with ribonuclease, Proc Natl Acad Sci USA 83, 3146-3150.
50. Maeda, T., Kitazoe, M., Tada, H., Llorens, R. d., Salomon, D. S., Ueda, M., Yamada, H., and Seno, M. (2002) Growth inhibition of mammalian cells by eosinophil cationic protein, European Journal of Biochemistry 269, 307-316.
51. Makarov, A. A., and Ilinskaya, O. N. (2003) Cytotoxic ribonucleases: molecular weapons and their targets, FEBS Letters 540, 15-20.
52. Domachowske, J. B., Dyer, K. D., Adams, A. G., Leto, T. L., and Rosenberg, H. F. (1998) Eosinophil cationic protein/RNase 3 is another RNase A-family ribonuclease with direct antiviral activity, Nucleic Acids Res 26, 3358-3363.
53. Domachowske, J. B., Dyer, K. D., Bonville, C. A., and Rosenberg, H. F. (1998) Recombinant human eosinophil-derived neurotoxin/RNase 2 functions as an effective antiviral agent against respiratory syncytial virus, J Infect Dis 177, 1458-1464.
54. Johnson, R. J., McCoy, J. G., Bingman, C. A., Phillips, G. N., Jr., and Raines, R. T. (2007) Inhibition of human pancreatic ribonuclease by the human ribonuclease inhibitor protein, J Mol Biol 368, 434-449.
55. Gleich, G. J., Loegering, D. A., Bell, M. P., Checkel, J. L., Ackerman, S. J., and McKean, D. J. (1986) Biochemical and functional similarities between human eosinophil-derived neurotoxin and eosinophil cationic protein: homology with ribonuclease, Proc Natl Acad Sci U S A 83, 3146-3150.
56. Gabay, J. E., Scott, R. W., Campanelli, D., Griffith, J., Wilde, C., Marra, M. N., Seeger, M., and Nathan, C. F. (1989) Antibiotic proteins of human polymorphonuclear leukocytes, Proc Natl Acad Sci U S A 86, 5610-5614.
57. Yang, D., Chen, Q., Rosenberg, H. F., Rybak, S. M., Newton, D. L., Wang, Z. Y., Fu, Q., Tchernev, V. T., Wang, M., Schweitzer, B., Kingsmore, S. F., Patel, D. D., Oppenheim, J. J., and Howard, O. M. (2004) Human ribonuclease A superfamily members, eosinophil-derived neurotoxin and pancreatic ribonuclease, induce dendritic cell maturation and activation, J Immunol 173, 6134-6142.
58. Seno, M., Futami, J., Tsushima, Y., Akutagawa, K., Kosaka, M., Tada, H., and Yamada, H. (1995) Molecular cloning and expression of human ribonuclease 4 cDNA, Biochim Biophys Acta 1261, 424-426.
59. Di Liddo, R., Dalzoppo, D., Baiguera, S., Conconi, M. T., Dettin, M., Parnigotto, P. P., and Grandi, C. (2010) In vitro biological activity of bovine milk ribonuclease-4, Mol Med Report 3, 127-132.
60. Saxena, S. K., Rybak, S. M., Davey, R. T., Jr., Youle, R. J., and Ackerman, E. J. (1992) Angiogenin is a cytotoxic, tRNA-specific ribonuclease in the RNase A superfamily, J Biol Chem 267, 21982-21986.
61. Tsirakis, G., Pappa, C. A., Kanellou, P., Stratinaki, M. A., Xekalou, A., Psarakis, F. E., Sakellaris, G., Alegakis, A., Stathopoulos, E. N., and Alexandrakis, M. G. (2011) Role of platelet-derived growth factor-AB in tumour growth and angiogenesis in relation with other angiogenic cytokines in multiple myeloma, Hematol Oncol.
62. Rosenberg, H. F., and Dyer, K. D. (1996) Molecular cloning and characterization of a novel human ribonuclease (RNase k6): increasing diversity in the enlarging ribonuclease gene family, Nucleic Acids Res 24, 3507-3513.
63. Torrent, M., Sanchez, D., Buzon, V., Nogues, M. V., Cladera, J., and Boix, E. (2009) Comparison of the membrane interaction mechanism of two antimicrobial RNases: RNase 3/ECP and RNase 7, Biochim Biophys Acta 1788, 1116-1125.
64. Huang, Y. C., Lin, Y. M., Chang, T. W., Wu, S. J., Lee, Y. S., Chang, M. D., Chen, C., Wu, S. H., and Liao, Y. D. (2007) The flexible and clustered lysine residues of human ribonuclease 7 are critical for membrane permeability and antimicrobial activity, J Biol Chem 282, 4626-4633.
65. Zhang, J., Dyer, K. D., and Rosenberg, H. F. (2002) RNase 8, a novel RNase A superfamily ribonuclease expressed uniquely in placenta, Nucleic Acids Res 30, 1169-1175.
66. Liu, J., Li, J., Wang, H., Zhang, C., Li, N., Lin, Y., and Wang, W. (2008) Cloning, expression and location of RNase9 in human epididymis, BMC Res Notes 1, 111.
67. Cheng, G. Z., Li, J. Y., Li, F., Wang, H. Y., and Shi, G. X. (2009) Human ribonuclease 9, a member of ribonuclease A superfamily, specifically expressed in epididymis, is a novel sperm-binding protein, Asian J Androl 11, 240-251.
68. Nassar, A. E., and Adams, P. E. (2003) Metabolite characterization in drug discovery utilizing robotic liquid-handling, quadruple time-of-flight mass spectrometry and in-silico prediction, Curr Drug Metab 4, 259-271.
69. Gerhard, D. S., Wagner, L., Feingold, E. A., Shenmen, C. M., Grouse, L. H., Schuler, G., Klein, S. L., Old, S., Rasooly, R., Good, P., Guyer, M., Peck, A. M., Derge, J. G., Lipman, D., Collins, F. S., Jang, W., Sherry, S., Feolo, M., Misquitta, L., Lee, E., Rotmistrovsky, K., Greenhut, S. F., Schaefer, C. F., Buetow, K., Bonner, T. I., Haussler, D., Kent, J., Kiekhaus, M., Furey, T., Brent, M., Prange, C., Schreiber, K., Shapiro, N., Bhat, N. K., Hopkins, R. F., Hsie, F., Driscoll, T., Soares, M. B., Casavant, T. L., Scheetz, T. E., Brown-stein, M. J., Usdin, T. B., Toshiyuki, S., Carninci, P., Piao, Y., Dudekula, D. B., Ko, M. S., Kawakami, K., Suzuki, Y., Sugano, S., Gruber, C. E., Smith, M. R., Simmons, B., Moore, T., Waterman, R., Johnson, S. L., Ruan, Y., Wei, C. L., Mathavan, S., Gunaratne, P. H., Wu, J., Garcia, A. M., Hulyk, S. W., Fuh, E., Yuan, Y., Sneed, A., Kowis, C., Hodgson, A., Muzny, D. M., McPherson, J., Gibbs, R. A., Fahey, J., Helton, E., Ketteman, M., Madan, A., Rodrigues, S., Sanchez, A., Whiting, M., Madari, A., Young, A. C., Wetherby, K. D., Granite, S. J., Kwong, P. N., Brinkley, C. P., Pearson, R. L., Bouffard, G. G., Blakesly, R. W., Green, E. D., Dickson, M. C., Rodriguez, A. C., Grimwood, J., Schmutz, J., Myers, R. M., Butterfield, Y. S., Griffith, M., Griffith, O. L., Krzywinski, M. I., Liao, N., Morin, R., Palmquist, D., Petrescu, A. S., Skalska, U., Smailus, D. E., Stott, J. M., Schnerch, A., Schein, J. E., Jones, S. J., Holt, R. A., Baross, A., Marra, M. A., Clifton, S., Makowski, K. A., Bosak, S., and Malek, J. (2004) The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC), Genome Res 14, 2121-2127.
70. (2000) American Thoracic Society. Idiopathic pulmonary fibrosis: diagnosis and treatment. International consensus statement. American Thoracic Society (ATS), and the European Respiratory Society (ERS), Am J Respir Crit Care Med 161, 646-664.
71. Strieter, R. M., Keeley, E. C., Hughes, M. A., Burdick, M. D., and Mehrad, B. (2009) The role of circulating mesenchymal progenitor cells (fibrocytes) in the pathogenesis of pulmonary fibrosis, J Leukoc Biol 86, 1111-1118.
72. Phillips, R. J., Burdick, M. D., Hong, K., Lutz, M. A., Murray, L. A., Xue, Y. Y., Belperio, J. A., Keane, M. P., and Strieter, R. M. (2004) Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis, Journal of Clinical Investigation 114, 438-446.
73. Bousquet, J., Chanez, P., Lacoste, J. Y., Barneon, G., Ghavanian, N., Enander, I., Venge, P., Ahlstedt, S., Simony-Lafontaine, J., Godard, P., and et al. (1990) Eosinophilic inflammation in asthma, N Engl J Med 323, 1033-1039.
74. Fan, T. C., Fang, S. L., Hwang, C. S., Hsu, C. Y., Lu, X. A., Hung, S. C., Lin, S. C., and Chang, M. D. (2008) Characterization of molecular interactions between eosinophil cationic protein and heparin, J Biol Chem 283, 25468-25474.
75. Strieter, R. M., Gomperts, B. N., and Keane, M. P. (2007) The role of CXC chemokines in pulmonary fibrosis, J Clin Invest 117, 549-556.
76. Selman, M., Pardo, A., Barrera, L., Estrada, A., Watson, S. R., Wilson, K., Aziz, N., Kaminski, N., and Zlotnik, A. (2006) Gene expression profiles distinguish idiopathic pulmonary fibrosis from hypersensitivity pneumonitis, Am J Respir Crit Care Med 173, 188-198.
77. Weaver, C. T., Hatton, R. D., Mangan, P. R., and Harrington, L. E. (2007) IL-17 family cytokines and the expanding diversity of effector T cell lineages, Annu Rev Immunol 25, 821-852.
78. Huh, D., Matthews, B. D., Mammoto, A., Montoya-Zavala, M., Hsin, H. Y., and Ingber, D. E. (2010) Reconstituting Organ-Level Lung Functions on a Chip, Science 328, 1662-1668.
79. Abe, R., Donnelly, S. C., Peng, T., Bucala, R., and Metz, C. N. (2001) Peripheral blood fibrocytes: differentiation pathway and migration to wound sites, J Immunol 166, 7556-7562.
80. Westergren-Thorsson, G., Hernnas, J., Sarnstrand, B., Oldberg, A., Heinegard, D., and Malmstrom, A. (1993) Altered expression of small proteoglycans, collagen, and transforming growth factor-beta 1 in developing bleomycin-induced pulmonary fibrosis in rats, J Clin Invest 92, 632-637.
81. Wynn, T. A. (2003) IL-13 effector functions, Annual review of immunology 21, 425-456.
82. Shi-Wen, X., Leask, A., and Abraham, D. (2008) Regulation and function of connective tissue growth factor/CCN2 in tissue repair, scarring and fibrosis, Cytokine & growth factor reviews 19, 133-144.
83. Yoshida, R., Imai, T., Hieshima, K., Kusuda, J., Baba, M., Kitaura, M., Nishimura, M., Kakizaki, M., Nomiyama, H., and Yoshie, O. (1997) Molecular cloning of a novel human CC chemokine EBI1-ligand chemokine that is a specific functional ligand for EBI1, CCR7, Journal of Biological Chemistry 272, 13803-13809.
84. Stanley, E. R., Berg, K. L., Einstein, D. B., Lee, P. S. W., and Yeung, Y. G. (1994) The Biology and Action of Colony-Stimulating Factor-I, Stem Cells 12, 15-25.
85. Jin, L., Abrahams, J. P., Skinner, R., Petitou, M., Pike, R. N., and Carrell, R. W. (1997) The anticoagulant activation of antithrombin by heparin, Proc Natl Acad Sci U S A 94, 14683-14688.
86. Stucker, M., Baier, V., Reuther, T., Hoffmann, K., Kellam, K., and Altmeyer, P. (1996) Capillary blood cell velocity in human skin capillaries located perpendicularly to the skin surface: measured by a new laser Doppler anemometer, Microvascular research 52, 188-192.
87. Bystrom, J., Amin, K., and Bishop-Bailey, D. (2011) Analysing the eosinophil cationic protein - a clue to the function of the eosinophil granulocyte, Respir Res 12, 10.
88. Tan, J. T., McLennan, S. V., Song, W. W., Lo, L. W., Bonner, J. G., Williams, P. F., and Twigg, S. M. (2008) Connective tissue growth factor inhibits adipocyte differentiation, Am J Physiol Cell Physiol 295, C740-751.
89. Zhao, H., and Peehl, D. M. (2009) Tumor-promoting phenotype of CD90hi prostate cancer-associated fibroblasts, Prostate 69, 991-1000.
90. Fortin, M., Wagner, J. G., Brault, J., Harkema, J. R., Renzi, P. M., Paquet, L., and Ferrari, N. (2010) Spatial and temporal expression of CCR3 and the common beta chain of the IL-3, IL-5 and GM-CSF receptor in the nasal epithelium and lymphoid tissues in a rat model of allergic rhinitis, Cytokine 52, 194-202.
91. Stadnicki, A., Machnik, G., Klimacka-Nawrot, E., Wolanska-Karut, A., and Labuzek, K. (2009) Transforming growth factor-beta1 and its receptors in patients with ulcerative colitis, Int Immunopharmacol 9, 761-766.
92. Hayashi, F., Means, T. K., and Luster, A. D. (2003) Toll-like receptors stimulate human neutrophil function, Blood 102, 2660-2669.
93. Adib-Conquy, M., Pedron, T., Petit-Bertron, A. F., Tabary, O., Corvol, H., Jacquot, J., Clement, A., and Cavaillon, J. M. (2008) Neutrophils in cystic fibrosis display a distinct gene expression pattern, Mol Med 14, 36-44.
94. Katono, T., Kawato, T., Tanabe, N., Suzuki, N., Iida, T., Morozumi, A., Ochiai, K., and Maeno, M. (2008) Sodium butyrate stimulates mineralized nodule formation and osteoprotegerin expression by human osteoblasts, Arch Oral Biol 53, 903-909.
95. Letuve, S., Lajoie-Kadoch, S., Audusseau, S., Rothenberg, M. E., Fiset, P. O., Ludwig, M. S., and Hamid, Q. (2006) IL-17E upregulates the expression of proinflammatory cytokines in lung fibroblasts, J Allergy Clin Immunol 117, 590-596.