簡易檢索 / 詳目顯示

研究生: 曾元亨
Tseng, Yuan-Heng
論文名稱: 新型氮氧化鈦接觸電阻式隨機存取記憶體與其載子傳輸模型
A New TiON Based Contact Resistive Random Access Memory (CRRAM) and Its Carrier Transport Model
指導教授: 林崇榮
Lin, Chrong-Jung
金雅琴
King, Ya-Chin
口試委員: 張彌彰
連振炘
張孟凡
莊紹勳
蔡銘進
翁烔城
金雅琴
林崇榮
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 126
中文關鍵詞: 電阻式隨機存取記憶體接觸電阻式隨機存取記憶體記憶體隨機電報雜訊電阻切換模型
外文關鍵詞: RRAM, CRRAM, memory, RTN, resistive switching model
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近來為了應付龐大的電子資料之保存,因此相對地須使現存的超大型積體電路記憶元件具有較佳的操作性能以及可靠度等之需求與日俱增,但當製程技術越過65奈米的世代時,將成為巨大的挑戰。興新的記憶體中可近乎這些需求的標準包括磁阻式記憶體(MRAM),像變化記憶體(PCM)和電阻式記憶體(RRAM)皆是大有可為的參考候選,甚至以獨立化商品型式與嵌入式記憶體的應用為目標。
    在本論文之中,成功地展示與驗證一完全相容於90 nm互補式金氧半(CMOS)邏輯製程技術下之新穎的接觸電阻式記憶體(CR-RAM),這元件的記憶端點是將TiN/TiON/SiO2材料堆疊於鎢接觸點(W contact)與N+矽之間以實現之。此外,它呈現了絕佳的元件特性例如:快速編程、製程簡單、免疫於重複寫入之影響、具非揮發性等,且資料的保存力於150 °C的測試溫度下更是超越了1 000小時以上。藉由電流偏壓法測定1T+1R (一電晶體一電阻) CR-RAM 自我限流之觀察,更進一步支持重置(reset)電流可以藉著利用字元線去控制設置(set)電流而使之減小。為了推展CR-RAM的切換機制,起因於電子捕捉與釋放產生的隨機電報雜訊(RTN)之量測法被用於探討CR-RAM堆疊層之特性。由RTN模型的輔助之下,量測而得的資料可被用於參數的萃取與分析,以致最終發展出一陷阱引發電阻切換之預測模型。


    Increasing demand for better cell performance and reliability in VLSI memories is currently a great challenge beyond the 65 nm technology node. Emerging memories such as MRAM (Magnetoresistive Random Access Memory), PCM (Phase Change Memory), and RRAM (Resistive Random Access Memory) are promising candidates to meet these requirements, and are even targeted at stand-alone and embedded memory applications.
    This dissertation presents a novel contact RRAM (CR-RAM) realized by stacking TiN/TiON/SiO2 between W contact and N+ silicon, which is fully compatible with 90 nm CMOS logic technology. The proposed RRAM exhibits excellent performance in terms of a fast program speed, easy fabrication, and immunity to overwrite and non-volatility. Data retention is significantly over 1 000 hours under 150 °C baking conditions. An investigation of the self-compliance of the One Transistor 1T+1R CR-RAM (One Resistor Contact Resistive Random Access Memory) using the current bias method confirms that the reset current can be reduced by the word-line (WL) controlled set current. The random telegraph noise (RTN) generated by electron trapping/de-trapping on the stacking layers was also investigated to determine the CR-RAM switching mechanism. The RTN model makes it possible for parameter extraction from the measured data. Analyzing the extracted parameters and the measured results lead to a proposed trap-induced resistive switching model.

    Abstract i 摘要 ii Acknowledgement iii Table of Contents iv List of Tables vii List of Figures viii Chapter 1 Introduction 1 1.1 Preface 1 1.2 Motivation 2 1.3 Dissertation Organization 3 Chapter 2 Next-Generation Non-Volatile Memories 4 2.1 Introduction 4 2.2 Phase Change Memory (PCM) 4 2.3 Magnetoresistive Random Access Memory (MRAM) 5 2.4 Resistive Random Access Memory (RRAM) 6 2.4.1. Self-Accelerated Thermal Dissolution Model 7 2.4.2. Ion-Transport-Recombination Model 8 2.5 Summary 8 Chapter 3 Contact Resistive Random Access Memory (CR-RAM) Devices 17 3.1 Introduction 17 3.2 Development of Contact Resistive Random Access Memory Cell 18 3.2.1 Cell Layout and Structure 18 3.2.2 CR-RAM contact sizing Effect 19 3.2.3 Operation Principle for Set and Reset 20 3.3 Programmable Contact Sizing Effect 21 3.3.1 DC Characteristics for CR-RAM Cells 22 3.3.2 CR-RAM Characterization by Pulse Operation 23 3.4 Resistance and WL Voltages 24 3.6 Summary 24 Chapter 4 The Word-Line Effect, Operation Optimization, and Reliability of 1T+1R CR-RAM 44 4.1 Introduction 44 4.2 Designation of the Selection Unit for CR-RAM 45 4.2.1 Unipolar Switching Characteristics 45 4.2.2 Measurement of the 1Diond+1Resistor Structure 45 4.2.3 Measurement of the 1Transistor+1Resistor Structure 46 4.3 Word-Line and Source-Line Effects on CR-RAM Resistance 47 4.3.1 How Set Word-Line Voltage Affects LRS 47 4.3.2 HRS Affected by Word-Line and Source-Line Voltages 49 4.4 Reliability Issues 49 4.4.1 Overwriting and Set/Reset Disturb Test 49 4.4.2 Endurance and Baking Test 49 4.4 Summary 50 Chapter 5 Random Telegraph Signal (RTS) Models in CR-RAM Device 61 5.1 Introduction 61 5.2 Two-Level Current Fluctuations 62 5.2.1 Fluctuation Factor 62 5.2.2 Lifetimes and Fluctuation Amplitude 63 5.2.3 Mean Capture and Emission Time 64 5.3 Random Telegraph Noise (RTN) Models 65 5.3.1 Trap Energy 66 5.3.2 Activation Energy 67 5.4 Effective Trap Depth and Leakage Area 70 5.4.1 Trap Depth 71 5.4.2 Effective Area of Leakage Path 71 5.7 Summary 72 Chapter 6 Modeling of Electron Conduction and Resistive Switching in CR-RAM Devices as Random Telegraph Noise 89 6.1 Introduction 89 6.2 CR-RAM Resistance Characteristics and Temperature Effect 90 6.2.1 Nonpolar Resistive Switching Characteristic 90 6.2.2 Trap-Induced RTS in CR-RAM Dielectric 91 6.2.3 Noise Power Spectrum 91 6.2.4 Space Charge Limited Current (SCLC) Model 92 6.2.5 Temperature Effect on Resistance and Instability 92 6.3 Random Telegraph Noise (RTN) Analysis and Discussion 93 6.3.1 Forward and Reverse Operation 93 6.3.2 WL Effect 94 6.4 Trap-Induced Resistive Switching Model 95 6.5 Zeff on Forward and Reverse Measurements 95 6.5.1 Temperature Effect on Zeff 95 6.5.2 Trap Characterization on Forward and Reverse Measurements 96 6.6 Summary 97 Chapter 7 Conclusion 115 7.1 Conclusion 115 References 117 Vita 125

    Chapter 1

    [1] C. M. Chang, Steve S. Chung, Y. S. Hsieh, L. W. Cheng, C. T. Tsai, G. H. Ma, S. C. Chien, and S. W. Sun, “The Observation of Trapping and Detrapping Effects in High-k Gate Dielectric MOSFETs by a New Gate Current Random Telegraph Noise (IG-RTN) Approach”, in IEDM Tech. Dig., pp.787-790, Dec. , 2007.
    [2] A. E. Rakhshani, “The role of space-charge-limited-current conduction in evaluation of the electrical properties of thin Cu2O films” J. Appl. Phys., Vol.69, No. 4, pp. 2365-2369, Feb. 1991.

    Chapter 2

    [1] H. Honi, J. H. Yi, J. H. Park, Y. H Ha, I. G. Baek, S. O. Park, Y. N. Hwang, S. H. Lee, Y. T. Kim, K. H. Lee, U-In Chug and J. T. Moon, “A Novel Cell Technology Using N-doed GeSbTe Films for Phase Change RAM,” Symposium on VLSI Technology, pp. 177-178, 2003.
    [2] S. Lai and T. Lowrey, “OUM - A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications,” in IEDM Tech. Dig., pp. 803-806, 2001.
    [3] A. Redaelli, A. Pirovano, F. Pellizzer, A. L. Lacaita, D. Ielmini, and R. Bez, “Electronic switching effect and phase-change transition in chalcogenide materials,” IEEE EDL, vol. 25 no. 10, pp.684-686, 2004.
    [4] S. Lai, “Current status of the phase change memory and its future,” in IEDM Tech. Dig., pp. 255-258, 2003.
    [5] 葉林秀、李佳謀、徐明豐、吳德和,"磁阻式隨機存取記憶體技術的發展",物理雙月刊(廿六卷四期)pp. 607-619,2004年8月
    [6] Y. Huai, Y. Zhou, I. Tudosa, R. Malmhall, R. Ranjan and J. Zhang, “Progress and outlook for stt-mram (invited)” IEEE/ACM ICCAD, pp. 235, 2011.
    [7] B. F. Cockburn, “Tutorial on magnetic tunnel junction magnetoresistive random-access memory,” Interational Workshop on MTDT, pp.45-51, 2004.
    [8] B. N. Engel, N. D. Rizzo, J. Janesky, J. M. Slaughter, R. Dave, M. DeHerrera, M. Durlam and S. Tehrani, “The science and technology of magnetoresistive tunneling memory,” IEEE Trans. Nanotechnology, vol. 1, no. 1, pp. 32-38, 2002.
    [9] M. Durlam, B. Craigo, M. DeHerrera, B. N. Engel, G. Grynkewich, B. Huang, J. Janesky, M. Martin, B. Martino, J. Salter, J. M. Slaughter, L. Wise and S. Tehrani, ” Toggle MRAM: A highly-reliable Non-Volatile Memory,” International Symposium on VLSI-TSA, 2007.
    [10] I.-S. Park, K.-R. Kim, S. Lee and J. Ahn, “Resistance Switching Characteristics for Nonvolatile Memory Operation of Binary Metal Oxides,” JJAP, Vol. 46, No. 4B, pp. 2172–2174, 2007.
    [11] U. Russo, D. Ielmini, C. Cagli, A. L. Lacaita, S. Spiga, C. Wiemer, M. Perego and M. Fanciulli, “Conductive-filament switching analysis and self-accelerated thermal dissolution model for reset in NiO-based RRAM,” in IEDM Tech. Dig., pp. 775-778, 2007.
    [12] U. Russo, D. Ielmini, C. Cagli and A. L. Lacaita, “Self-Accelerated Thermal Dissolution Model for Reset Programming in Unipolar Resistive-Swtching Memory (RRAM) Devices,” IEEE Trans. Electron Devices, vol. 56, no. 2, pp. 193-200, Feb. 2009.
    [13] N. Xu, B. Gao, L. F. Liu, B. Sun, X. Y. Liu, R. Q. Han, J. F. Kang and B. Yu, “ A Unified Physical Model of Switching Behavior n Oxide-Based RRAM,” Symposium on VLSI Tech., pp. 100-101, 2008.
    [14] B. Gao, S. Yu, N. Xu, L. F. Liu, B. Sun, X. Y. Liu, R. Q. Han, J. F. Kang, B. Yu and Y. Wang, “ Oxide-Based RRAM Switching Mechansm: A New Ion-Transport-Recombination Model,” in IEDM Tech. Dig., 2008.
    [15] N. Xu, L. Liu, X. Sun, X. Liu, D. Han, Y. Wang, R. Han, J. Kang and B. Yu, “Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories,” Appl. Phys. Lett., 92, 232112, 2008.
    [16] H. Akinaga and H. Shima, “Resistive Random Access Memory (ReRAM) Based on Metal Oxides,” in Proceedings of the IEEE, Vol. 98, no.12 , 2010.

    Chapter 3

    [1] D. Lee, D.-J. Seong, H. J. Choi, I. Jo, R. Dong, W. Xiang, S. Oh, M. Pyun, S.-O Seo, S. Heo, M. Jo, D.-K Hwang, H. K. Park, M. Chang, M. Hasan and H. Hwang, “Excellent uniformity and reproducible resistance switching characteristics of doped binary metal oxides for non-volatile resistance memory applications,” in IEDM Tech. Dig., 2006.
    [2] H. Sim, J. Choi, D. Lee, M. Chang, D. Choi, Y. Son, E.-H. Lee, W. Kim, Y. Park, I.-K. Yoo and H. Hwang, “ Excellent Resistance Switching Characteristics of Pt/SrTiO3 Schottky Junction for Multi-bit Nonvolatile Memory Application,” in IEDM Tech. Dig., pp 758-761, 2005.
    [3] K. Tsunoda, K. Kinoshita, H. Noshiro, Y. Yamazaki, T. Jizuka, Y. Ito, A. Takahashi, A. Okano, Y. Sato, T. Fukano, M. Aoki, and Y. Sugiyama, “ Low Power and High Speed Switching of Ti-doped NiO RRAM under the Unipolar Voltage Source of less than 3V,” in IEDM Tech. Dig., pp. 767-770, 2007.
    [4] H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, and M.-J. Tsai, ” Low Power and High Speed Bipolar Switching with A Thin Reactive Ti Buffer Layer in Robust HfO2 Based RRAM,” in IEDM Tech. Dig., 2008.
    [5] Y. H. Tseng, C.-E. Huang, C.-H. Kuo, Y.-D. Chih, C. J. Lin, “High Density and Ultra Small Cell Size of Contact RRAM (CR-RAM) in 90nm CMOS Logic Technology and Circuits,” in IEDM Tech. Dig., 2009 (accepted).
    [6] S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D.-S. Suh, Y. S. Joung, and I. K. Yoo I. R. Hwang, S. H. Kim, I. S. Byun, J.-S. Kim, J. S. Choi and B. H. Parka, “Reproducible resistance switching in polycrystalline NiO films,”in Appl. Phys. Lett., vol. 23, no. 23, pp. 5655, Dec. 2004.
    [7] D. C. Kim, S. Seo, S. E. Ahn, D.-S. Suh, M. J. Lee, B.-H. Park, and I. K. Yoo I. G. Baek, H.-J. Kim, E. K. Yim, J. E. Lee, S. O. Park, H. S. Kim, U-In Chung, J. T. Moon, and B. I. Ryu, ” Electrical observations of filamentary conductions for the resistive memory switching in NiO films,” in Appl. Phys. Lett., 88, 202102 (2006).
    [8] U. Russo, D. Ielmini, C. Cagli and A. L. Lacaita, “Filament conduction and reset mechanism in NiO-based resistive-switching memory (RRAM) devices,” in IEEE Trans. Electron Devices, vol. 56, no. 2, pp. 186-192, Feb. 2009.
    [9] K. Kinoshita, K. Tsunoda, Y. Sato, H. Noshiro, S. Yagaki, M. Aoki, and Y. Sugiyama, ” Reduction in the reset current in a resistive random access memory consisting of NiOx brought about by reducing a parasitic capacitance,” in Appl. Phys. Lett., 93, 033506 (2008).
    [10] K. Kinoshita, K. Tsunoda, Y. Sato, H. Noshiro, Y. Yamazaki, T. Fukano, S. Yagaki, M. Aoki, Y. Sugiyama, ” Reduction of Reset Current in NiO-ReRAM Brought about by Ideal Current Limiter,” in IEEE NVSMW, pp. 66-67, Aug. 2007.
    [11] C. -E. Huang, et al., "Multilevel antifuse cells with programmable contact in pure 90 nm logic process," Jpn. J. Appl. Phys., vol. 49, 2010.
    [12] A. Misaka and K. Harafuji, "Simulation study of micro-loading phenomena in silicon dioxide hole etching," IEEE Trans. Electron Device, vol. 44, no. 5, 1997, pp. 751-760.
    [13] C. Liu and Barbara Abraham-Shrauner, " Plasma-etching profile model for SiO2 contact holes" IEEE Trans. Plasma Science, vol. 30, no. 4, 2002, pp. 1579-1587.

    Chapter 4

    [1] D. Lee, D.-J. Seong, H. J. Choi, I. Jo, R. Dong, W. Xiang, S. Oh, M. Pyun, S.-O Seo, S. Heo, M. Jo, D.-K Hwang, H. K. Park, M. Chang, M. Hasan and H. Hwang, “ Excellent uniformity and reproducible resistance switching characteristics of doped binary metal oxides for non-volatile resistance memory applications,” in IEDM Tech. Dig., 2006.
    [2] H. Sim, J. Choi, D. Lee, M. Chang, D. Choi, Y. Son, E.-H. Lee, W. Kim, Y. Park, I.-K. Yoo and H. Hwang, “ Excellent Resistance Switching Characteristics of Pt/SrTiO3 Schottky Junction for Multi-bit Nonvolatile Memory Application,” in IEDM Tech. Dig., pp 758-761, 2005.
    [3] K. Tsunoda, K. Kinoshita, H. Noshiro, Y. Yamazaki, T. Jizuka, Y. Ito, A. Takahashi, A. Okano, Y. Sato, T. Fukano, M. Aoki, and Y. Sugiyama, “ Low Power and High Speed Switching of Ti-doped NiO RRAM under the Unipolar Voltage Source of less than 3V,” in IEDM Tech. Dig., pp. 767-770, 2007.
    [4] H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, and M.-J. Tsai, ” Low Power and High Speed Bipolar Switching with A Thin Reactive Ti Buffer Layer in Robust HfO2 Based RRAM,” in IEDM Tech. Dig., 2008.
    [5] Y. H. Tseng, C.-E. Huang, C.-H. Kuo, Y.-D. Chih, C. J. Lin, “High Density and Ultra Small Cell Size of Contact RRAM (CR-RAM) in 90nm CMOS Logic Technology and Circuits,” in IEDM Tech. Dig., pp.109-112, 2009.
    [6] S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D.-S. Suh, Y. S. Joung, and I. K. Yoo I. R. Hwang, S. H. Kim, I. S. Byun, J.-S. Kim, J. S. Choi and B. H. Parka, “Reproducible resistance switching in polycrystalline NiO films,”in Appl. Phys. Lett., vol. 23, no. 23, pp. 5655, Dec. 2004.
    [7] D. C. Kim, S. Seo, S. E. Ahn, D.-S. Suh, M. J. Lee, B.-H. Park, and I. K. Yoo, I. G. Baek, H.-J. Kim, E. K. Yim, J. E. Lee, S. O. Park, H. S. Kim, U.-I. Chung, J. T. Moon, and B. I. Ryu, ” Electrical observations of filamentary conductions for the resistive memory switching in NiO films,” in Appl. Phys. Lett., 88, 202102 (2006).
    [8] U. Russo, D. Ielmini, C. Cagli and A. L. Lacaita, “Filament conduction and reset mechanism in NiO-based resistive-switching memory (RRAM) devices,” in IEEE Trans. Electron Devices, vol. 56, no. 2, pp. 186-192, Feb. 2009.
    [9] K. Kinoshita, K. Tsunoda, Y. Sato, H. Noshiro, S. Yagaki, M. Aoki, and Y. Sugiyama, ” Reduction in the reset current in a resistive random access memory consisting of NiOx brought about by reducing a parasitic capacitance,” in Appl. Phys. Lett., 93, 033506 (2008).
    [10] K. Kinoshita, K. Tsunoda, Y. Sato, H. Noshiro, Y. Yamazaki, T. Fukano, S. Yagaki, M. Aoki, Y. Sugiyama, ” Reduction of Reset Current in NiO-ReRAM Brought about by Ideal Current Limiter,” in IEEE NVSMW, pp. 66-67, Aug. 2007.
    [11] L. Zhang, R. Huang, D. Gao, D. Wu, Y. Kuang, P. Tang, W. Ding, A.Z.H. Wang, and Y. Wang, "Unipolar Resistive Switch Based on Silicon Monoxide Realized by CMOS Technology," IEEE EDL., vol. 30, no. 8, pp.870-872, 2009.
    [12] I.G. Baek, M.S. Lee, S. Seo, M.J. Lee, D.H. Seo, D.-S. Suh, J.C. Park, S.O. Park, H.S. Kim, I.K. Yoo, U.-In. Chung, and J.T. Moon, "Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses," in IEDM Tech. Dig., pp.587-590, 2004.
    [13] Y. Sakotsubo, M. Terai, S. Kotsuji, Y.Saito, M. Tada, Y. Yabe, and H. Hada, "A new approach for improving operating margin of unipolar ReRAM using local minimu m of reset," Symposium on VLSI Technology, pp. 87-88, 2010.

    Chapter 5

    [1] M. J. Kirton and M. J. Uren, “Noise in solid-state microstructures: a new perspective on individual defects, interface states, and low-frequency (1/f) noise,” Adv Phys., Vol. 38, pp. 367-468, 1989.
    [2] W. J. Skocpol, L. D. Jackel, R. E. Howard, L. A. Fetter, R. W. Epworth, and D. M. Tennant, “Discrete Resistance Switching in Submicrometer Silicon Inversion Layers: Individual Interface Traps and Low-Frequency (1/f?) Noise.” Adv. Phys., vol. 38, p. 367, 1984.
    [3] K. K. Hung, P. K. KO, C. Hu. and Y. C. Cheng, “Random telegraph noise of deep-submicrometer MOSFET’s,” IEEE Electron Dev. Lett., vol. 11, p. 90, 1990.
    [4] Z. Shi, J. P. Mieville, and M. Dutoit, “Random telegraph signals in deep submicron n-MOSFET’s,” IEEE Tran. Electron Devices, vol. 41, p. 1161, 1994.
    [5] E. Simoen, and C. Claeys, “Random Telegraph Signal: a local probe for single point defect studies in solid-state devices.” Materials Science and Engineering, B91-92, 136 (2002).
    [6] C. M. Chang, Steve S. Chung, Y. S. Hsieh, L. W. Cheng, C. T. Tsai, G. H. Ma, S. C. Chien, and S. W. Sun, “The Observation of Trapping and Detrapping Effects in High-k Gate Dielectric MOSFETs by a New Gate Current Random Telegraph Noise (IG-RTN) Approach”, in IEDM Tech. Dig., pp.787-790, Dec. , 2007.
    [7] S. Lee, H.-J. Cho, Y. Son, D. S. Lee and H. Shin, “Characterization of oxide traps leading to RTN in high-k and metal gate MOSFETs.” IEDM Tech. Dig., pp.763-766, 2009.
    [8] R. Degraeve, G. Groeseneken, R. Bellens, M. Depas, and H. E. Maes, “A consistent model for the thickness dependence of intrinsic breakdown in ultra thin oxides,” in IEDM Tech. Dig., 1995, p. 863.
    [9] M. Terai, Y. Sakotsubo, Y. Saito, S. Kotsuji, and H. Hada, "Effect of bottom electrode of ReRAM with Ta2O5/TiO2 stack on RTN and retention." in IEDM Tech. Dig., 2009, p. 775.
    [10] N. V. Amarasinghe, Z. Çelik-Butler, and A. Keshavarz, “Extraction of oxide trap properties using temperature dependence of random telegraph signals in submicron metal–oxide–semiconductor field-effect transistors,” J. Appl. Phys. 89, 5526 (2001).
    [11] W. Shockley and W. T. Read, Jr., Phys. Rev. 87, 835,1952
    [12] Schroder, Semiconductor Material and Device Characterization, 3rd Edition.
    [13] F. Crupi, R. Degraeve, G. Groeseneken, T. Nigam, and H. E. Maes, “On the properties of the gate and substrate current after soft breakdown in ultrathin oxide layers,” IEEE Trans. on Elec. Dev., Vol. 45, No. 11, pp. 2329-2334, 1998.
    [14] J.-W. Wu, J.-W. You, H.-C. Ma, C.-C. Cheng, C.-F. Hsu, C.-S. Chang, G.-W. Huang, and T. Wang, “Excess Low-Frequency Noise in Ultrathin Oxide n-MOSFETs Arising From Valence-Band ElectronTunneling,” IEEE Trans. on Elec. Dev., Vol. 52, No. 9, pp. 2061-2066, 2005.
    [14] S. S. Chung and C. M. Chang, “The investigation of capture/emission mechanism in high-k gate dielectric soft breakdown by gate current random telegraph noise approach” Appl. Phys. Lett. 93, 213502 (2008).

    Chapter 6

    [1] H. Sim, D. Seong, M. Chang, H. Hwang; “Excellent Resistance Switching Characteristics of Pt/Single-crystal Nb-Doped SrTiO3 Schottky Junction,” in IEEE NVSMW, pp 88-89, 2006.
    [2] H. Sim, J. Choi, D. Lee, M. Chang, D. Choi, Y. Son, E.-H. Lee, W. Kim, Y. Park, I.-K. Yoo and H. Hwang, “ Excellent Resistance Switching Characteristics of Pt/SrTiO3 Schottky Junction for Multi-bit Nonvolatile Memory Application,” in IEDM Tech. Dig., pp 758-761, 2005.
    [3] U. Russo, D. Ielmini, C. Cagli, A. L. Lacaita, S. Spiga, C. Wiemer, M. Perego and M. Fanciulli, “Conductive-filament switching analysis and self-accelerated thermal dissolution model for reset in NiO-based RRAM,” in IEDM Tech. Dig., pp 775-778, 2007.
    [4] N. Xu, B. Gao, L.F. Liu, B. Sun, X.Y. Liu, R.Q. Han, J.F. Kang and B. Yu, ”A unified physical model of switching behavior in oxide-based RRAM,” IEEE Symposium on VLSI Tech., pp 100-101, 2008.
    [5] B. Gao, S. Yu, N. Xu, L. F. Liu, B. Sun, X. Y. Liu, R. Q. Han, J. F. Kang, B. Yu, Y. Y. Wang, “Oxide-based RRAM switching mechanism: A new ion-transport-recombination model” in IEDM Tech. Dig., 2008.
    [6] C. M. Chang, Steve S. Chung, Y. S. Hsieh, L. W. Cheng, C. T. Tsai, G. H. Ma, S. C. Chien, and S. W. Sun, “The Observation of Trapping and Detrapping Effects in High-k Gate Dielectric MOSFETs by a New Gate Current Random Telegraph Noise (IG-RTN) Approach”, in IEDM Tech. Dig., pp.787-790, Dec. , 2007.
    [7] R. Soni, P. Meuffels, A. Petraru, M. Weides, C. Kugeler, R. Waser, H. Kohlstedt, “Probing Cu doped Ge0.3Se0.7 based resistance switching memory devices with random telegraph noise,” J. Appl. Phys. 107, 024517 (2010).
    [8] M. Terai, Y. Sakotsubo, Y. Saito, S. Kotsuji and H. Hada, “Effect of bottom electrode of ReRAM with Ta2O5/TiO2 stack on RTN and retention,” in IEDM Tech. Dig., pp.775-778, Dec. , 2009.
    [9] N. V. Amarasinghe, Z. Celik-Butler, A. Keshavarz, ”Extraction of oxide trap properties using temperature dependence of random telegraph signals in submicron metal-oxide-semiconductor field-effect transistors,” J. Appl. Phys., Vol. 89, No. 10, pp. 5526-5532, May 2001.
    [10] Y. H. Tseng, C.-E. Huang, C.-H. Kuo, Y.-D. Chih, C. J. Lin, “High Density and Ultra Small Cell Size of Contact RRAM (CR-RAM) in 90nm CMOS Logic Technology and Circuits,” in IEDM Tech. Dig., pp.109-112, 2009.
    [11] Y. H. Tseng, C.-E. Huang, C. Kuo, Y. Chih,; Y.-C. King, and C. J. Lin, “A New High-Density and Ultrasmall-Cell-Size Contact RRAM (CR-RAM) With Fully CMOS-Logic-Compatible Technology and Circuits,” IEEE Trans. Electron Devices, vol. 58, no. 1, pp. 53-58, 2011.
    [12] R. Degraeve, G. Groeseneken, R. Bellens, M. Depas, and H. E. Maes, “A consistent model for the thickness dependence of intrinsic breakdown in ultra thin oxides,” in IEDM Tech. Dig., 1995, p. 863.
    [13] A. E. Rakhshani, “The role of space-charge-limited-current conduction in evaluation of the electrical properties of thin Cu2O films” J. Appl. Phys., Vol.69, No. 4, pp. 2365-2369, Feb. 1991.
    [14] A. Chen, S. Haddad, Y.-C. Wu, T.-N. Fang, Z. Lan, S. Avanzino, S. Pangrle, M. Buynoski, M. Rathor, W. Cai, N. Tripsas, C. Bill, M. VanBuskirk, and M. Taguchi, “Non-Volatile Resistive Switching for Advanced Memory Applications,” in IEDM Tech. Dig., pp.746-749, 2005.
    [15] H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, and M.-J. Tsai, ” Low Power and High Speed Bipolar Switching with A Thin Reactive Ti Buffer Layer in Robust HfO2 Based RRAM,” in IEDM Tech. Dig., 2008.
    [16] K. M. Kim, B. J. Choi, Y. C. Shin, S. Choi and C. S. Hwang, “Anode-interface localized filamentary mechanism in resistive switching of TiO2 thin films,” J. Appl. Phys. 91, 012907 (2007).
    [17] J.-K. Lee, H. Y. Jeong, I.-T. Cho, J. Y. Lee, S.-Y. Choi, H.-I. Kwon, and J.-H. Lee, “Conduction and Low-Frequency Noise Analysis in Al/α-TiOX/Al Bipolar Switching Resistance Random Access Memory Devices,” IEEE Electron Device Lett., vol. 31, no. 6, pp. 603-605, 2010.
    [18] S. Lee, H.-J. Cho, Y. Son, D. S. Lee and H. Shin, “Characterization of oxide traps leading to RTN in high-k and metal gate MOSFETs.” IEDM Tech. Dig., pp.763-766, 2009.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE