簡易檢索 / 詳目顯示

研究生: 李奧
Leonardo Lesser Rojas
論文名稱: Electrode Nanogap-Enabled and Electrokinetically Assisted Analysis of Nanomaterials and Biomacromolecules Combining Electronic and Surface Enhanced Spectroscopic Techniques
以奈米間隙電極及電趨動結合電子和表面增強光譜技術分析奈米材料和生物巨分子
指導教授: 周家復
Chou, Chia-Fu
蘇育全
Su, Yu-Chuan
口試委員: 關肇正
Kaun, Chao-Cheng
陳祺
Chen, Chi
陳彥龍
Chen, Yeng-Long
周家復
Chou, Chia Fu
蘇育全
Su, Yu-Chuan
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 158
中文關鍵詞: 蛋白質分析奈米孔隙介電泳電導表面增強拉曼光譜奈米電訊號測量奈米電極奈米流道單分子生物聚合物分析
外文關鍵詞: Protein analysis;, electrode nanogap;, dielectrophoresis;, conductance;, surface-enhanced Raman spectroscopy (SERS), nanoelectronic reader, nanoelectrodes, nanochannel, single biopolymer analysis
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • This work reports the development of two versatile platforms for manipulation, positioning and sensing of biological and solid state matter based on electrode nanogaps, which can function as dielectrophoresis-enabled nanoelectronic and spectroscopic detection substrates, and as nanoelectronic molecular translocation readers.
    First, a versatile analysis platform based on nanogap electrode and using a state-of-the-art custom made instrument, was developed for the manipulation and sensing of nanomaterials and biomacromolecules, demonstrated here for double-wall carbon nanotube bundles and low-copy number protein analysis. An array of titanium electrodes separated by sub-10 nm sized gaps function as AC dielectrophoresis-based nanomaterial and molecular trapping templates, hot spots for surface enhanced Raman spectroscopy (SERS) as well as fluorescence imaging, and electronic readers. During molecular trapping, current measurements across the nanogaps and recorded Raman spectra showed the presence and characteristics of the trapped proteins, potentially down to single molecules, indicated by the discrete jumps in current/conductance signals.
    Second, a tandem array of nanoelectronic readers embedded coplanar to a fluidic nanochannel for correlated single biopolymer analysis was developed. Using a two-step electron-beam lithography process to fabricate a tandem array of three pairs of tip-like gold nanoelectronic detectors with electrode gap size as small as 9 nm, embedded in a coplanar fashion to 60 nm deep, 100 nm wide, and up to 150 μm long nanochannels coupled to a world-micro-nanofluidic interface for easy sample introduction. Experimental tests with a sealed device using DNA-protein complexes demonstrate the coplanarity of the nanoelectrodes to the nanochannel surface and the current detection of translocation events of such complexed biomolecules.
    Our platforms may open up a simple ways for low-concentration heterogeneous sample analysis without the need for target preconcentration and could improve transverse current detection by either combining spectroscopic means (SERS), as in the first scenario, or correlated time-of-flight measurements of translocating samples, serving as an autocalibrated velocimeter and nanoscale tandem Coulter counters, as in the second scenario, for single molecule analysis.


    本研究利用奈米電極隙發展兩個技術平台,用以操作、定位與偵測生物或凝態樣品。可應用於介電泳輔助之奈米電子與光譜偵測元件,並可應用為分子穿越移位時之電訊號偵測。
    為了操作與偵測奈米物質與生物分子,我們結合奈米電極隙與自行組裝之儀器開發了一套多功能分析平台,並量測雙層奈米碳管纖維與微量蛋白質分析作為驗證。平台一:使用小於10奈米間隙的鈦電極陣列,利用交流電介電泳原理來捕捉分子並取得其拉曼光譜、螢光影像與電訊號。電流量測與拉曼光譜可以偵測到蛋白質捕捉的過程與光譜特徵,而在導電度 / 電流訊號中,階梯式升高的訊號,推測為接近單分子偵測的特徵。
    另外,平台二:我們開發了一組與奈米流道共平面的內置奈米電極來作為單一聚合物分子的分析。使用兩步驟的電子束製程製作三組9奈米間距的金奈米電極,放置在 60奈米深、100奈米寬與150微米長的奈米流道,最後使用DNA-蛋白質複合物來驗證奈米流道與電極的共平面特性,及電流量測此複合生物分子穿越奈米電極的移位事件。
    我們的技術平台未來可望在未預先濃縮的情況下,進行低濃度的複雜樣品分析。並可以使用電流偵測與拉曼光譜結合(平台一),或者使用時差測距方式量測通過的樣品,作為自動校正之速度量測儀器,以及奈米等級的計數器陣列(平台二)來進行單分子的量測。

    Table of Contents Abstract……………………………………………………………………………i Acknowledgements…………………………………………………………… iv Motivation 1 1: Introduction 6 2: Theoretical Background 17 2.1 Electrokinetic phenomena: transport and immobilization of nanomatter 17 2.1.1 Electrophoresis 17 2.1.2 Dielectrophoresis 22 2.2 Nanoelectronic detection 25 2.2.1 Ion Electronics: Ionic and blockade currents 26 2.2.2 Tunneling current across nanoscale electrode junctions 29 2.3 Surface Enhanced Raman Scattering 32 2.3.1. Raman scattering 33 2.3.3. Fundamentals of SERS 36 3: Development and characterization of a nanogap enabled and dielectrophoretically assisted electronic detection instrument supported by Raman spectroscopy and first measurements using carbon nanotube bundles 45 3.1 Experimental Details 46 3.1.1 Chip device fabrication and characterization 46 3.1.2 Electronic instrument design and computer control 49 3.1.3 Complementary Raman Spectroscopy measurements 52 3.1.4 Preparation of CNT solutions 53 3.2 Results and discussion 54 3.3 Chapter Conclusions 62 4: Low-Copy Number Protein Detection by Electrode Nanogap-Enabled Dielectrophoretic Trapping for SERS and Electronic Measurements 64 4.1 Experimental Details 65 4.1.1 Device fabrication 65 4.1.2 SEM inspection and surface bombardment 65 4.1.3 Electronic, spectroscopic and fluorescence microscopy measurements 66 4.1.4 Preparation of protein solutions and chamber encapsulation 67 4.1.5 Computational modeling 68 4.2 Results and discussion 71 4.3 Chapter Conclusions 92 5: Tandem array of nanoelectronic readers embedded coplanar to a fluidic nanochannel for correlated single biopolymer analysis 94 5.1 Experimental Details 96 5.1.1 Device fabrication 96 5.1.2 Electronic and optical measurements 106 5.1.3 Synthesis of DNA-protein complexes 107 5.1.4. Computational modeling 107 5.2 Results and discussion 110 5.3 Chapter Conclusions 125 Conclusion 129 Bibliography 131 Appendixes 146 Appendix A. Summary of derivation of the dielectrophoretic force 147 Appendix B. Computer-controlled integrated circuit board design and its initial control and communication interface 151 Appendix C. Bradford Microassay Procedure for quantification of protein solutions 152 Appendix D. Negative controls 153 Appendix E. SERS/Fluorescence measurements during the on-off of DEP field 154 Appendix F. SEM Inspection of nanoelectrodes before and after an experiment 155 Appendix G. Image processing of Figure 4.8a 155

    1. D.R. Reyes, D. Iossifidis, P.-A. Auroux, A. Manz, "Micro Total Analysis Systems. 1. Introduction, Theory, and Technology", Anal. Chem., vol. 74, 12, pp. 2623-2636, 2002.
    2. P.-A. Auroux, D. Iossifidis, D.R. Reyes, A. Manz, "Micro Total Analysis Systems. 2. Analytical Standard Operations and Applications", Anal. Chem., vol. 74, 12, pp. 2637-2652, 2002.
    3. J.C.T. Eijkel, "Nanofluidics: what is it and what can we expect from it?", Microfluid. Nanofluid., vol. 1, 3, pp. 249-267, 2005.
    4. J. Tegenfeldt, "Micro-and nanofluidics for DNA analysis", Anal. Bioanal. Chem., vol. 378, 7, pp. 1678-1692, 2004.
    5. B.M. Venkatesan,R. Bashir, "Nanopore sensors for nucleic acid analysis", Nat Nano, vol. 6, 10, pp. 615-624, 2011.
    6. N.J. Tao, "Electron transport in molecular junctions", Nat Nano, vol. 1, 3, pp. 173-181, 2006.
    7. C. Joo, H. Balci, Y. Ishitsuka, C. Buranachai, T. Ha, "Advances in Single-Molecule Fluorescence Methods for Molecular Biology", Annu. Rev. Biochem, vol. 77, 1, pp. 51-76, 2008.
    8. J. Kneipp, "SERS-a single-molecule and nanoscale tool for bioanalytics", Chem. Soc. Rev., vol. 37, 5, pp. 1052-1060, 2008.
    9. E.C. Le Ru,P.G. Etchegoin, "Single-Molecule Surface-Enhanced Raman Spectroscopy", Annu. Rev. Phys. Chem., vol. 63, 1, pp. 65-87, 2012.
    10. B. Pettinger, P. Schambach, C.J. Villagómez, N. Scott, "Tip-Enhanced Raman Spectroscopy: Near-Fields Acting on a Few Molecules", Annu. Rev. Phys. Chem., vol. 63, 1, pp. 379-399, 2012.
    11. A.Bezryadin, "Electrostatic trapping of single conducting nanoparticles between nanoelectrodes", Appl. Phys. Lett., vol. 71, 9, pp. 1273-1275, 1997.
    12. M.J. Ackerman, "Ion Channels-Basic Science and Clinical Disease", New Engl. J. Med., vol. 336, pp. 1575-1586, 1997.
    13. J. Dunlop, "High throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology", Nat. Rev. Drug. Discov., vol. 7, 353-368, 2008.
    14. J.W. Johnson, "Measurement of nonuniform current densities and current kinetics in Aplysia neurons using a large patch method.", Biophys. J., vol. 55, 2, pp. 299-308, 1989.
    15. D. Porath, "Direct measurement of electrical transport through DNA molecules", Nature, vol. 403, 635-638, 2000.
    16. V. Bhalla, "DNA electronics", EMBO Rep., vol. 4, 5, pp. 442-445, 2003.
    17. A. Bezryadin, C. Dekker, G. Schmid, "Electrostatic trapping of single conducting nanoparticles between nanoelectrodes", Appl. Phys. Lett., vol. 71, 9, pp. 1273-1275, 1997.
    18. D. Porath, A. Bezryadin, S. de Vries, C. Dekker, "Direct measurement of electrical transport through DNA molecules", Nature, vol. 403, 6770, pp. 635-638, 2000.
    19. T. Albrecht, "Electrochemical tunnelling sensors and their potential applications", Nat Commun, vol. 3, 829, 2012.
    20. X. Liang,S.Y. Chou, "Nanogap Detector Inside Nanofluidic Channel for Fast Real-Time Label-Free DNA Analysis", Nano Lett., vol. 8, 5, pp. 1472-1476, 2008.
    21. M. Zwolak, "Electronic Signature of DNA Nucleotides via Transverse Transport", Nano Lett., vol. 5, 3, pp. 421-424, 2005.
    22. J. Lagerqvist, "Fast DNA Sequencing via Transverse Electronic Transport", Nano Lett., vol. 6, 4, pp. 779-782, 2006.
    23. D.R. Ward, N.K. Grady, C.S. Levin, N.J. Halas, Y. Wu, P. Nordlander, D. Natelson, "Electromigrated Nanoscale Gaps for Surface-Enhanced Raman Spectroscopy", Nano Lett., vol. 7, 5, pp. 1396-1400, 2007.
    24. P.E. Sheehan,L.J. Whitman, "Detection Limits for Nanoscale Biosensors", Nano Lett., vol. 5, 4, pp. 803-807, 2005.
    25. W. Sparreboom, A. van den Berg, J.C.T. Eijkel, "Principles and applications of nanofluidic transport", Nat. Nanotechnol., vol. 4, 11, pp. 713-720, 2009.
    26. N. Swami, C.F. Chou, V. Ramamurthy, V. Chaurey, "Enhancing DNA hybridization kinetics through constriction-based dielectrophoresis", Lab Chip, vol. 9, 3212-3220, 2009.
    27. M. Washizu,O. Kurosawa, "Electrostatic manipulation of DNA in microfabricated structures", IEEE T. Ind. Appl., vol. 26, 6, pp. 1165-1172, 1990.
    28. M. Washizu, "Molecular Dielectrophoresis of Biopolymers", IEEE T. Ind. Appl., vol. 30, 4, pp. 835-843, 1994.
    29. G. Giraud, R. Pethig, H. Schulze, G. Henihan, J.G. Terry, A. Menachery, I. Ciani, D. Corrigan, C.J. Campbell, A.R. Mount, P. Ghazal, A.J. Walton, J. Crain, T.T. Bachmann, "Dielectrophoretic manipulation of ribosomal RNA", Biomicrofluidics, vol. 5, 2, pp. 024116, 2011.
    30. B.H. Lapizco-Encinas, "Dielectrophoresis for the manipulation of nanobioparticles", Electrophoresis, vol. 28, 4521-4538, 2007.
    31. B.H. Lapizco-Encinas, S. Ozuna-Chacon, M. Rito-Palomares, "Protein manipulation with insulator-based dielectrophoresis and direct current electric fields", J. Chromatogr., A, vol. 1206, 1, pp. 45-51, 2008.
    32. K.-T. Liao,C.-F. Chou, "Nanoscale Molecular Traps and Dams for Ultrafast Protein Enrichment in High-Conductivity Buffers", J. Am. Chem. Soc., vol. 134, 21, pp. 8742-8745, 2012.
    33. K.T. Liao, M. Tsegaye, V. Chaurey, C.F. Chou, N.S. Swami, "Nano-constriction device for rapid protein preconcentration in physiological media through a balance of electrokinetic forces", Electrophoresis, vol. 33, 13, pp. 1958-1966, 2012.
    34. T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O'Brien, "Quantum computers", Nature, vol. 464, 7285, pp. 45-53, 2010.
    35. J.J. Kasianowicz, E. Brandin, D. Branton, D.W. Deamer, "Characterization of individual polynucleotide molecules using a membrane channel", Proc. Natl. Acad. Sci. USA, vol. 93, 13770-13773, 1996.
    36. B.C. Gierhart, D.G. Howitt, S.J. Chen, Z. Zhu, D.E. Kotecki, R.L. Smith, S.D. Collins, "Nanopore with transverse nanoelectrodes for electrical characterization and sequencing of DNA", Sens. Actuator B-Chem., vol. 132, 2, pp. 593-600, 2008.
    37. M. Taniguchi, M. Tsutsui, K. Yokota, T. Kawai, "Fabrication of the gating nanopore device", Appl. Phys. Lett., vol. 95, 12, pp. 123701, 2009.
    38. J. Lagerqvist, M. Zwolak, M. Di Ventra, "Fast DNA Sequencing via Transverse Electronic Transport", Nano Lett., vol. 6, 4, pp. 779-782, 2006.
    39. A.P. Ivanov, E. Instuli, C.M. McGilvery, G. Baldwin, D.W. McComb, T. Albrecht, J.B. Edel, "DNA Tunneling Detector Embedded in a Nanopore", Nano Lett., vol. 11, 1, pp. 279-285, 2010.
    40. M. Tsutsui, S. Rahong, Y. Iizumi, T. Okazaki, M. Taniguchi, T. Kawai, "Single-molecule sensing electrode embedded in-plane nanopore", Sci. Rep., vol. 1, 2011.
    41. M. Tsutsui, M. Taniguchi, K. Yokota, T. Kawai, "Identifying single nucleotides by tunnelling current", Nat Nano, vol. 5, 4, pp. 286-290, 2010.
    42. H.A. Pohl, Dielectrophoresis:the Behavior of Neutral Matter in Nonuniform Electric Field. Cambridge, Cambridge University Press, 1978.
    43. R. Pethig, "Review Article-Dielectrophoresis: Status of the theory, technology, and applications", Biomicrofluidics, vol. 4, 2, pp. 022811, 2010.
    44. C.-F. Chou, J.O. Tegenfeldt, O. Bakajin, S.S. Chan, E.C. Cox, N. Darnton, T. Duke, R.H. Austin, "Electrodeless Dielectrophoresis of Single- and Double-Stranded DNA", Biophys. J., vol. 83, 4, pp. 2170-2179, 2002.
    45. H.A. Pohl, "The Motion and Precipitation of Suspensoids in Divergent Electric Fields", J. Appl. Phys., vol. 22, 7, pp. 869-871, 1951.
    46. A. Castellanos, A. Ramos, A. González, N.G. Green, H. Morgan, "Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws", J. Phys. D: Appl. Phys., vol. 36, 20, pp. 2584, 2003.
    47. S. Tuukkanen, A. Kuzyk, J.J. Toppari, V.P. Hytonen, T. Ihalainen, P. Torma, "Dielectrophoresis of nanoscale double-stranded DNA and humidity effects on its electrical conductivity", Appl. Phys. Lett., vol. 87, 18, pp. 183102-3, 2005.
    48. R. Hölzel, N. Calander, Z. Chiragwandi, M. Willander, F.F. Bier, "Trapping Single Molecules by Dielectrophoresis", Phys. Rev. Lett., vol. 95, 12, pp. 128102, 2005.
    49. L. An,C.R. Friedrich, "Process parameters and their relations for the dielectrophoretic assembly of carbon nanotubes", J. Appl. Phys., vol. 105, 7, pp. 074314, 2009.
    50. M. Duchamp, K. Lee, B. Dwir, J.W. Seo, E. Kapon, L. Forró, A. Magrez, "Controlled Positioning of Carbon Nanotubes by Dielectrophoresis: Insights into the Solvent and Substrate Role", ACS Nano, vol. 4, 1, pp. 279-284, 2010.
    51. J. Li, Q. Zhang, N. Peng, Q. Zhu, "Manipulation of carbon nanotubes using AC dielectrophoresis", Appl. Phys. Lett., vol. 86, 15, pp. -, 2005.
    52. X.Q. Chen, T. Saito, H. Yamada, K. Matsushige, "Aligning single-wall carbon nanotubes with an alternating-current electric field", Appl. Phys. Lett., vol. 78, 23, pp. 3714-3716, 2001.
    53. J. Chung, K.-H. Lee, J. Lee, "Nanoscale Gap Fabrication by Carbon Nanotube-Extracted Lithography (CEL)", Nano Lett., vol. 3, 8, pp. 1029-1031, 2003.
    54. J. Chung, K.-H. Lee, J. Lee, R.S. Ruoff, "Toward Large-Scale Integration of Carbon Nanotubes", Langmuir, vol. 20, 8, pp. 3011-3017, 2004.
    55. J. Chung,J. Lee, "Nanoscale gap fabrication and integration of carbon nanotubes by micromachining", Sens. Actuator A-Phys., vol. 104, 3, pp. 229-235, 2003.
    56. N.G. Green,H. Morgan, "Separation of submicrometre particles using a combination of dielectrophoretic and electrohydrodynamic forces", J. Phys. D: Appl. Phys., vol. 31, 7, pp. L25-L30, 1998.
    57. N.G. Green, A. Ramos, H. Morgan, "Ac electrokinetics: a survey of sub-micrometre particle dynamics", J. Phys. D: Appl. Phys., vol. 33, 6, pp. 632, 2000.
    58. G. Zheng, L. Qin, C.A. Mirkin, "Spectroscopically Enhancing Electrical Nanotraps", Angew. Chem., vol. 120, 10, pp. 1964-1967, 2008.
    59. G. Zheng, X. Chen, C.A. Mirkin, "Complementary Electrical and Spectroscopic Detection Assays with On-Wire-Lithography-Based Nanostructures", Small, vol. 5, 22, pp. 2537-2540, 2009.
    60. M. Fleischmann, P.J. Hendra, A.J. McQuillan, "Raman spectra of pyridine adsorbed at a silver electrode", Chem. Phys. Lett., vol. 26, 2, pp. 163-166, 1974.
    61. K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld, "Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)", Phys. Rev. Lett., vol. 78, 9, pp. 1667-1670, 1997.
    62. S. Nie,S.R. Emory, "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering", Science, vol. 275, 5303, pp. 1102-1106, 1997.
    63. R.n. Alvarez-Puebla, L.M. Liz-Marzán, F.J. García de Abajo, "Light Concentration at the Nanometer Scale", J. Phys. Chem. Lett., vol. 1, 16, pp. 2428-2434, 2010.
    64. D. Natelson, Y.J. Li, J.B. Herzog, "Nanogap structures: combining enhanced Raman spectroscopy and electronic transport", Phys. Chem. Chem. Phys., vol. 15, 15, pp. 5262-5275, 2013.
    65. K. Moslavac, B. Lovrecček, R. Radeka, "Kinetics of anodic layer formation on Gold", Electrochim. Acta, vol. 17, 3, pp. 415-420, 1972.
    66. R.P. Frankenthal,D.E. Thompson, "The Anodic Behavior of Gold in Sulfuric Acid Solutions", J. Electrochem. Soc., vol. 123, 6, pp. 799-804, 1976.
    67. P. Vanýsek, Section 5: Thermochemistry, Electrochemistry, and Solution Chemistry, in CRC Handbook of Chemistry and Physics, W.M. Haynes, Editor, CRC Press/Taylor and Francis, Boca Raton, FL., pp. 5-80, 2014.
    68. H. Kaesche, A note on crevice corrosion, in Corrosion of metals : physicochemical principles and current problems, Springer, Berlin ; New York, pp. 381-384, 2003.
    69. D. Landolt, Ch. 7: Non-Uniform Corrosion Governed by Metallurgy, in Corrosion and Surface Chemistry of Metals, CRC Press, pp. 291-293, 2007.
    70. J.W. Schultze,A.W. Hassel, Passivity of Metals, Alloys and Semiconductors, in Encyclopedia of Electrochemistry, A. Bard, M. Stratmann, and G. Frankel, Editors, Wiley-VCH, Weinheim, pp. 216–235, 2007.
    71. H. Yamada,Y. Yamamoto, "Surface enhanced Raman scattering (SERS) of chemisorbed species on various kinds of metals and semiconductors", Surf. Sci., vol. 134, 1, pp. 71-90, 1983.
    72. Y. Chen,Y. Fang, "Surface enhanced Raman scattering (SERS) activity studies of Si, Fe, Ti, Al and Ag films’ prepared by magnetron sputtering", Spectrochim. Acta Mol. Biomol. Spectros., vol. 69, 3, pp. 733-737, 2008.
    73. W. Qin, J.L. Yao, R.A. Gu, "Studies of Surface-Enhanced Raman Spectroscopy on Bare Ti Electrode", Spectrosc Spect Anal, vol. 29, 12, pp. 3300-3303, 2009.
    74. L. Yang, X. Jiang, W. Ruan, B. Zhao, W. Xu, J.R. Lombardi, "Observation of Enhanced Raman Scattering for Molecules Adsorbed on TiO2 Nanoparticles: Charge-Transfer Contribution", J. Phys. Chem. C, vol. 112, 50, pp. 20095-20098, 2008.
    75. A. Musumeci, D. Gosztola, T. Schiller, N.M. Dimitrijevic, V. Mujica, D. Martin, T. Rajh, "SERS of Semiconducting Nanoparticles (TiO2 Hybrid Composites)", J. Am. Chem. Soc., vol. 131, 17, pp. 6040-6041, 2009.
    76. L. Yang, Y. Zhang, W. Ruan, B. Zhao, W. Xu, J.R. Lombardi, "Improved surface-enhanced Raman scattering properties of TiO2 nanoparticles by Zn dopant", J. Raman Spectrosc., vol. 41, 7, pp. 721-726, 2010.
    77. D. Branton, D.W. Deamer, A. Marziali, H. Bayley, S.A. Benner, T. Butler, M. Di Ventra, S. Garaj, A. Hibbs, X. Huang, S.B. Jovanovich, P.S. Krstic, S. Lindsay, X.S. Ling, C.H. Mastrangelo, A. Meller, J.S. Oliver, Y.V. Pershin, J.M. Ramsey, R. Riehn, G.V. Soni, V. Tabard-Cossa, M. Wanunu, M. Wiggin, J.A. Schloss, "The potential and challenges of nanopore sequencing", Nat. Biotechnol., vol. 26, 10, pp. 1146-1153, 2008.
    78. O.B. Bakajin, T.A.J. Duke, C.F. Chou, S.S. Chan, R.H. Austin, E.C. Cox, "Electrohydrodynamic Stretching of DNA in Confined Environments", Phys. Rev. Lett., vol. 80, 12, pp. 2737-2740, 1998.
    79. J.O. Tegenfeldt, C. Prinz, H. Cao, S. Chou, W.W. Reisner, R. Riehn, Y.M. Wang, E.C. Cox, J.C. Sturm, P. Silberzan, R.H. Austin, "The dynamics of genomic-length DNA molecules in 100-nm channels", Proc. Natl. Acad. Sci. USA, vol. 101, 30, pp. 10979-10983, 2004.
    80. J.-W. Yeh, A. Taloni, Y.-L. Chen, C.-F. Chou, "Entropy-Driven Single Molecule Tug-of-War of DNA at Micro−Nanofluidic Interfaces", Nano Lett., vol. 12, 3, pp. 1597-1602, 2012.
    81. H. Park, A.K.L. Lim, A.P. Alivisatos, J. Park, P.L. McEuen, "Fabrication of metallic electrodes with nanometer separation by electromigration", Appl. Phys. Lett., vol. 75, 2, pp. 301-303, 1999.
    82. M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, J.M. Tour, "Conductance of a molecular junction", Science, vol. 278, 5336, pp. 252-254, 1997.
    83. S. Kubatkin, A. Danilov, M. Hjort, J. Cornil, J.L. Bredas, N. Stuhr-Hansen, P. Hedegard, T. Bjornholm, "Single-electron transistor of a single organic molecule with access to several redox states", Nature, vol. 425, 6959, pp. 698-701, 2003.
    84. D.E. Johnston, D.R. Strachan, A.T.C. Johnson, "Parallel fabrication of nanogap electrodes", Nano Lett., vol. 7, 9, pp. 2774-2777, 2007.
    85. M. Tsutsui, M. Taniguchi, T. Kawai, "Fabrication of 0.5 nm electrode gaps using self-breaking technique", Appl. Phys. Lett., vol. 93, 16, pp. 163115-3, 2008.
    86. A. Kanda, M. Wada, Y. Hamamoto, Y. Ootuka, "Simple and controlled fabrication of nanoscale gaps using double-angle evaporation", Physica E Low Dimens. Syst. Nanostruct., vol. 29, 3–4, pp. 707-711, 2005.
    87. W. Chen, "Fabrication of sub-10 nm structures by lift-off and by etching after electron-beam exposure of poly(methylmethacrylate) resist on solid subtrates", J. Vac. Sci. Technol. B, vol. 11, 2519-2523, 1993.
    88. M.D. Fischbein, "Nanogaps by direct lithography for high-resolution imaging and electronic characterization of nanostructures", Appl. Phys. Lett., vol. 88, pp. 063116, 2006.
    89. T. Maleki, "A nanofluidic channel with embedded transverse nanoelectrodes", Nanotechnology, vol. 20, 2009.
    90. M. Tsutsui, M. Taniguchi, T. Kawai, "Transverse Field Effects on DNA-Sized Particle Dynamics", Nano Lett., vol. 9, 4, pp. 1659-1662, 2009.
    91. M. Tsutsui, Y. He, M. Furuhashi, S. Rahong, M. Taniguchi, T. Kawai, "Transverse electric field dragging of DNA in a nanochannel", Sci. Rep., vol. 2, 2012.
    92. P. Tabeling, Introduction to microfluidics. Oxford University Press, 2005.
    93. R.J. Hunter, Foundations of Colloid Science. Oxford University Press, 2001.
    94. A. Campion,P. Kambhampati, "Surface-enhanced Raman scattering", Chem. Soc. Rev., vol. 27, 4, pp. 241-250, 1998.
    95. W. Reisner, K.J. Morton, R. Riehn, Y.M. Wang, Z. Yu, M. Rosen, J.C. Sturm, S.Y. Chou, E. Frey, R.H. Austin, "Statics and Dynamics of Single DNA Molecules Confined in Nanochannels", Phys. Rev. Lett., vol. 94, 19, pp. 196101, 2005.
    96. J.D. Cross, E.A. Strychalski, H.G. Craighead, "Size-dependent DNA mobility in nanochannels", J. Appl. Phys., vol. 102, 2, pp. 024701-5, 2007.
    97. J.T. Mannion, C.H. Reccius, J.D. Cross, H.G. Craighead, "Conformational Analysis of Single DNA Molecules Undergoing Entropically Induced Motion in Nanochannels", Biophys. J., vol. 90, 12, pp. 4538-4545, 2006.
    98. M. Kerker, D.-S. Wang, H. Chew, "Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata", Appl. Opt., vol. 19, 24, pp. 4159-4174, 1980.
    99. A. Ramos, H. Morgan, N.G. Green, A. Castellanos, "Ac electrokinetics: a review of forces in microelectrode structures", J. Phys. D: Appl. Phys., vol. 31, 18, pp. 2338, 1998.
    100. J.J. Kasianowicz, "Characterization of individual polynucleotide molecules using a membrane channel", Proc. Natl. Acad. Sci. U.S.A., vol. 93, 13770-13773, 1996.
    101. M. Zwolak,M. Di Ventra, "Colloquium: Physical approaches to DNA sequencing and detection", Rev. Mod. Phys., vol. 80, 1, pp. 141-165, 2008.
    102. A. Nitzan, "Electron Transmission Through Molecules and Molecular Interfaces", Annu. Rev. Phys. Chem., vol. 52, 1, pp. 681-750, 2001.
    103. J. Zhang, A.M. Kuznetsov, I.G. Medvedev, Q. Chi, T. Albrecht, P.S. Jensen, J. Ulstrup, "Single-Molecule Electron Transfer in Electrochemical Environments", Chem. Rev., vol. 108, 7, pp. 2737-2791, 2008.
    104. M. Galperin, M.A. Ratner, A. Nitzan, A. Troisi, "Nuclear Coupling and Polarization in Molecular Transport Junctions: Beyond Tunneling to Function", Science, vol. 319, 5866, pp. 1056-1060, 2008.
    105. K. Kneipp, MIT Course 6.975 handouts, MIT, Editor, 2000.
    106. F. Siebert,P. Hildebrandt, Theory of Infrared Absorption and Raman Spectroscopy, in Vibrational Spectroscopy in Life Science, Wiley-VCH Verlag GmbH & Co. KGaA, pp. 11-61, 2008.
    107. Z.-Q. Tian, B. Ren, D.-Y. Wu, "Surface-Enhanced Raman Scattering:  From Noble to Transition Metals and from Rough Surfaces to Ordered Nanostructures", J. Phys. Chem. B, vol. 106, 37, pp. 9463-9483, 2002.
    108. C. Kittel, Introduction to solid state physics. Wiley, 1971.
    109. M. Moskovits, "Surface-enhanced spectroscopy", Rev. Mod. Phys., vol. 57, 3, pp. 783-826, 1985.
    110. G. Schatz, M. Young, R. Duyne, Electromagnetic Mechanism of SERS, in Surface-Enhanced Raman Scattering, K. Kneipp, M. Moskovits, and H. Kneipp, Editors, Springer Berlin Heidelberg, pp. 19-45, 2006.
    111. K. Liu, P. Avouris, J. Bucchignano, R. Martel, S. Sun, J. Michl, "Simple fabrication scheme for sub-10 nm electrode gaps using electron-beam lithography", Appl. Phys. Lett., vol. 80, 5, pp. 865-867, 2002.
    112. Y.C. Chang, D.C. Wang, C.S. Chang, T.T. Tsong, "Easy method to adjust the angle of the carbon nanotube probe of an atomic force microscope", Appl. Phys. Lett., vol. 82, 20, pp. 3541-3543, 2003.
    113. R. Kumar, H. Zhou, S.B. Cronin, "Surface-enhanced Raman spectroscopy and correlated scanning electron microscopy of individual carbon nanotubes", Appl. Phys. Lett., vol. 91, 22, pp. 223105, 2007.
    114. L. An,C.R. Friedrich, "Real-time gap impedance monitoring of dielectrophoretic assembly of multiwalled carbon nanotubes", Appl. Phys. Lett., vol. 92, 17, pp. 173103, 2008.
    115. L.A. Nagahara, I. Amlani, J. Lewenstein, R.K. Tsui, "Directed placement of suspended carbon nanotubes for nanometer-scale assembly", Appl. Phys. Lett., vol. 80, 20, pp. 3826-3828, 2002.
    116. Z. Chen, W. Hu, J. Guo, K. Saito, "Fabrication of nanoelectrodes based on controlled placement of carbon nanotubes using alternating-current electric field", J. Vac. Sci. Technol., B, vol. 22, 2, pp. 776-780, 2004.
    117. R. Krupke, F. Hennrich, H.B. Weber, M.M. Kappes, H. v. Löhneysen, "Simultaneous Deposition of Metallic Bundles of Single-walled Carbon Nanotubes Using Ac-dielectrophoresis", Nano Lett., vol. 3, 8, pp. 1019-1023, 2003.
    118. C. Lu, L. An, Q. Fu, J. Liu, H. Zhang, J. Murduck, "Schottky diodes from asymmetric metal-nanotube contacts", Appl. Phys. Lett., vol. 88, 13, pp. -, 2006.
    119. K. Kneipp, H. Kneipp, P. Corio, S.D.M. Brown, K. Shafer, J. Motz, L.T. Perelman, E.B. Hanlon, A. Marucci, G. Dresselhaus, M.S. Dresselhaus, "Surface-Enhanced and Normal Stokes and Anti-Stokes Raman Spectroscopy of Single-Walled Carbon Nanotubes", Phys. Rev. Lett., vol. 84, 15, pp. 3470-3473, 2000.
    120. Z. Yu,L. Brus, "Rayleigh and Raman Scattering from Individual Carbon Nanotube Bundles", J. Phys. Chem. B, vol. 105, 6, pp. 1123-1134, 2001.
    121. L. Qingwei, L. Changhong, W. Xueshen, F. Shoushan, "Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method", Nanotechnology, vol. 20, 14, pp. 145702, 2009.
    122. M. Goulian,S.M. Simon, "Tracking Single Proteins within Cells", Biophys. J., vol. 79, 4, pp. 2188-2198, 2000.
    123. A.N. Glazer, "Phycofluor probes", Trends Biochem. Sci, vol. 9, 10, pp. 423-427, 1984.
    124. A.D. Rakić, "Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum", Appl. Opt., vol. 34, 22, pp. 4755-4767, 1995.
    125. A. Otto, "On the significance of Shalaev's ‘hot spots’ in ensemble and single-molecule SERS by adsorbates on metallic films at the percolation threshold", J. Raman Spectrosc., vol. 37, 9, pp. 937-947, 2006.
    126. M.R. Beversluis, "Continuum generation from single gold nanostructures through near-field mediated intraband transitions", Physical Review B, vol. 68, 11, pp. 115433, 2003.
    127. J.A. Creighton, C.G. Blatchford, M.G. Albrecht, "Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength", J. Chem. Soc. Faraday Trans., vol. 75, 0, pp. 790-798, 1979.
    128. Y. Xu,L. Liang, "Surface-Enhanced Resonance Raman Scattering of R-Phycoerythrin Adsorbed by Silver Hydrosols", Appl. Spectrosc., vol. 48, 9, pp. 1147-1149, 1994.
    129. D.R. Ward, N.J. Halas, J.W. Ciszek, J.M. Tour, Y. Wu, P. Nordlander, D. Natelson, "Simultaneous Measurements of Electronic Conduction and Raman Response in Molecular Junctions", Nano Lett., vol. 8, 3, pp. 919-924, 2008.
    130. M. Galperin, M.A. Ratner, A. Nitzan, "Raman scattering in current-carrying molecular junctions", J. Chem. Phys., vol. 130, 14, pp. 144109, 2009.
    131. A. Barth, "What vibrations tell about proteins.", Q. Rev. Biophys., vol. 35, pp. 369-430, 2002.
    132. A.V. Mikhonin, Z. Ahmed, A. Ianoul, S.A. Asher, "Assignments and Conformational Dependencies of the Amide III Peptide Backbone UV Resonance Raman Bands", J. Phys. Chem. B, vol. 108, 49, pp. 19020-19028, 2004.
    133. Y. Maeda, H. Yamamoto, H. Kitano, "Self-Assembled Monolayers as Novel Biomembrane Mimetics .1. Characterization of Cytochrome-C Bound to Self-Assembled Monolayers on Silver by Surface-Enhanced Resonance Raman-Spectroscopy", J. Phys. Chem., vol. 99, 13, pp. 4837-4841, 1995.
    134. C. Contreras-Martel, J. Martinez-Oyanedel, M. Bunster, P. Legrand, C. Piras, X. Vernede, J.C. Fontecilla-Camps, "Crystallization and 2.2 A resolution structure of R-phycoerythrin from Gracilaria chilensis: a case of perfect hemihedral twinning", Acta Crystallogr. Sect. D-Biol. Crystallogr., vol. 57, 1, pp. 52-60, 2001.
    135. B.G. Frushour,J.L. Koenig, "Raman spectroscopic study of tropomyosin denaturation", Biopolymers, vol. 13, 9, pp. 1809-1819, 1974.
    136. R. Tuma, "Raman spectroscopy of proteins: from peptides to large assemblies", J. Raman Spectrosc., vol. 36, 4, pp. 307-319, 2005.
    137. R.A. Nyquist, Interpreting infrared, Raman, and nuclear magnetic resonance spectra. Volume 1. San Diego, Academic Press, 2001.
    138. E. Goormaghtigh, V. Cabiaux, J.M. Ruysschaert, "Determination of soluble and membrane protein structure by Fourier transform infrared spectroscopy. I. Assignments and model compounds", Subcell Biochem., vol. 23, 329-62, 1994.
    139. H.P. Schwan, "Electrode Polarization Impedance and Measurements in Biological Materials", Ann. N.Y. Acad. Sci., vol. 148, 1, pp. 191-209, 1968.
    140. B.J. Kirby, Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices. Cambridge University Press, 2010.
    141. S.T. Hess, S.H. Huang, A.A. Heikal, W.W. Webb, "Biological and chemical applications of fluorescence correlation spectroscopy: A review", Biochemistry, vol. 41, 3, pp. 697-705, 2002.
    142. M.A.G. Zevenbergen, P.S. Singh, E.D. Goluch, B.L. Wolfrum, S.G. Lemay, "Electrochemical Correlation Spectroscopy in Nanofluidic Cavities", Anal. Chem., vol. 81, 19, pp. 8203-8212, 2009.
    143. T.W. Hwang, S.P. Branagan, P.W. Bohn, "Chemical Noise Produced by Equilibrium Adsorption/Desorption of Surface Pyridine at Au-Ag-Au Bimetallic Atom-Scale Junctions Studied by Fluctuation Spectroscopy", J. Am. Chem. Soc., vol. 135, 11, pp. 4522-4528, 2013.
    144. B. Xu,N.J. Tao, "Measurement of Single-Molecule Resistance by Repeated Formation of Molecular Junctions", Science, vol. 301, 5637, pp. 1221-1223, 2003.
    145. S. Saraswat, A. Desireddy, D.S. Zheng, L.J. Guo, H.P. Lu, T.P. Bigioni, D. Isailovic, "Energy Transfer from Fluorescent Proteins to Metal Nanoparticles", J. Phys. Chem. C, vol. 115, 35, pp. 17587-17593, 2011.
    146. H.-Y. Hsu, H.-C. Chiang, J.-Y. Hu, K. Awasthi, C.-L. Mai, C.-Y. Yeh, N. Ohta, E.W.-G. Diau, "Field-Induced Fluorescence Quenching and Enhancement of Porphyrin Sensitizers on TiO2 Films and in PMMA Films", J. Phys. Chem. C, vol. 117, 47, pp. 24761-24766, 2013.
    147. G.S. Oehrlein, Y. Zhang, D. Vender, M. Haverlag, "Fluorocarbon high-density plasmas. I. Fluorocarbon film deposition and etching using CF4 and CHF3", J. Vac. Sci. Technol., A, vol. 12, 2, pp. 323-332, 1994.
    148. G.S. Oehrlein, Y. Zhang, D. Vender, O. Joubert, "Fluorocarbon high-density plasmas. II. Silicon dioxide and silicon etching using CF4 and CHF3", J. Vac. Sci. Technol., A, vol. 12, 2, pp. 333-344, 1994.
    149. A. Crockett, M. Almoustafa, W. Vanderlinde, Plasma delayering of integrated circuits, in Microelectronics Failure Analysis Desk Reference, pp. 243-25, 2004.
    150. H. Cao, J.O. Tegenfeldt, R.H. Austin, S.Y. Chou, "Gradient nanostructures for interfacing microfluidics and nanofluidics", Appl. Phys. Lett., vol. 81, 16, pp. 3058-3060, 2002.
    151. M. Sridhar, D.K. Maurya, J.R. Friend, L.Y. Yeo, "Focused ion beam milling of microchannels in lithium niobate", Biomicrofluidics, vol. 6, 1, pp. 012819, 2012.
    152. T. Tao, J. Ro, J. Melngailis, Z. Xue, H.D. Kaesz, "Focused ion beam induced deposition of platinum", J. Vac. Sci. Technol., B, vol. 8, 6, pp. 1826-1829, 1990.
    153. T. Tao, W. Wilkinson, J. Melngailis, "Focused ion beam induced deposition of platinum for repair processes", J. Vac. Sci. Technol., B, vol. 9, 1, pp. 162-164, 1991.
    154. J. Gu, "A simple polysilsesquioxane sealing of nanofluidic channels below 10 nm at room temperature", Lab Chip, vol. 7, 1198-1201, 2007.
    155. T. Leichlé, Y.-L. Lin, P.-C. Chiang, S.-M. Hu, K.-T. Liao, C.-F. Chou, "Biosensor-compatible encapsulation for pre-functionalized nanofluidic channels using asymmetric plasma treatment", Sens. Actuator B-Chem., vol. 161, 1, pp. 805-810, 2012.
    156. C.H. Reccius, S.M. Stavis, J.T. Mannion, L.P. Walker, H.G. Craighead, "Conformation, Length, and Speed Measurements of Electrodynamically Stretched DNA in Nanochannels", Biophys. J., vol. 95, 1, pp. 273-286, 2008.
    157. A.A. Travers,M. Buckle, DNA, protein interactions : a practical approach, The practical approach series. New York, Oxford University Press. xxii, 375 p., 2000.
    158. K.K. Sriram, J.-W. Yeh, Y.-L. Lin, Y.-R. Chang, C.-F. Chou, "Direct optical mapping of transcription factor binding sites on field-stretched λ-DNA in nanofluidic devices", Nucleic Acids Res., (just accepted), 2014.
    159. Y.L. Chen, M.D. Graham, J.J. de Pablo, G.C. Randall, M. Gupta, P.S. Doyle, "Conformation and dynamics of single DNA molecules in parallel-plate slit microchannels", Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys., vol. 70, 6, pp. 060901, 2004.
    160. E.W.K. Seth A. Darst, Roger D. Kornberg, "Three-dimensional structure of Escherichia coli RNA polymerase holoenzyme determined by electron crystallography", Nature, vol. 340, 6236, pp. 730-732, 1989.
    161. A.D. Wilson, T.H.P. Chang, A. Kern, "Experimental scanning electron-beam automatic registration system", J. Vac. Sci. Technol., vol. 12, 6, pp. 1240-1245, 1975.
    162. E.H. Anderson, D. Ha, J.A. Liddle, "Sub-pixel alignment for direct-write electron beam lithography", Microelectron. Eng., vol. 73–74, 0, pp. 74-79, 2004.
    163. E. Kratschmer, D.P. Klaus, R. Viswanathan, M.L. Turnidge, P.L. Reed, B. McPhail, "Image processing using shape recognition for alignment to damaged registration marks in electron beam lithography", J. Vac. Sci. Technol., B, vol. 27, 6, pp. 2563, 2009.
    164. D. Stephani, "Monte-Carlo calculations of backscattered electrons at registration marks", J. Vac. Sci. Technol., vol. 16, 6, pp. 1739-1742, 1979.
    165. K.E. Docherty, S. Thoms, P. Dobson, J.M.R. Weaver, "Improvements to the alignment process in a commercial vector scan electron beam lithography tool", Microelectron. Eng., vol. 85, 5–6, pp. 761-763, 2008.
    166. Y. Higuchi, N. Ohgami, M. Akai-Kasaya, A. Saito, M. Aono, Y. Kuwahara, "Application of Simple Mechanical Polishing to Fabrication of Nanogap Flat Electrodes", Jpn. J. Appl. Phys., vol. 45, L145, 2006.
    167. D.J. Bonthuis, C. Meyer, D. Stein, C. Dekker, "Conformation and Dynamics of DNA Confined in Slitlike Nanofluidic Channels", Phys. Rev. Lett., vol. 101, 10, pp. 108303, 2008.
    168. Y. Kim, K.S. Kim, K.L. Kounovsky, R. Chang, G.Y. Jung, J.J. dePablo, K. Jo, D.C. Schwartz, "Nanochannel confinement: DNA stretch approaching full contour length", Lab Chip, vol. 11, 10, pp. 1721-1729, 2011.
    169. M. Tsutsui, Y. He, M. Furuhashi, S. Rahong, M. Taniguchi, T. Kawai, "Transverse electric field dragging of DNA in a nanochannel", Sci. Rep., vol. 2, 394, 2012.
    170. V. Chaurey, C. Polanco, C.F. Chou, N.S. Swami, "Floating-electrode enhanced constriction dielectrophoresis for biomolecular trapping in physiological media of high conductivity", Biomicrofluidics, vol. 6, 1, pp. 012806, 2012.
    171. S.F. Lim, A. Karpusenko, J.J. Sakon, J.A. Hook, T.A. Lamar, R. Riehn, "DNA methylation profiling in nanochannels", Biomicrofluidics, vol. 5, 3, pp. 034106, 2011.
    172. S.F. Lim, A. Karpusenko, A.L. Blumers, D.E. Streng, R. Riehn, "Chromatin modification mapping in nanochannels", Biomicrofluidics, vol. 7, 064105, 2013.
    173. K. Vu, "Surface-enhanced Raman scattering detection of Amyloid-β using a nanogap enabled dielectrophoretic trap", Master Thesis, University of Applied Sciences Munich, Munich. p. 44, 2013

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE