簡易檢索 / 詳目顯示

研究生: 游家棋
Yu, Chia-Chi
論文名稱: La0.6Sr0.4Co0.95Cu0.05O3添加銀作為電觸媒陰極材料進行模擬廢氣中氮氧化物分解之研究
Study of adding Ag in La0.6Sr0.4Co0.95Cu0.05O3 as cathode material of electrochemical-catalytic cell on decomposition of nitric oxide in simulated exhaust
指導教授: 黃大仁
口試委員: 葉君棣
竇維平
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 94
中文關鍵詞: 富氧燃燒引擎氮氧化物電化學催化觸媒電池
外文關鍵詞: NOx, electrochemical-catalystic cell, diesel engine
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 柴油引擎(diesel engine)為富氧燃燒引擎(lean-burn engines)的富氧燃燒雖能提高燃料的使用效率,現今的氮氧化物(NOX)的處理技術須更努力尋找新方法來解決此問題,此研究新技術著重於電化學觸媒電池(electrochemical-catalytic cells, ECC)能夠在中低溫時,通入富氧燃燒排放之模擬廢氣,更有效將其NOX轉換形成無害的N2與O2,並且將未燃燒完全之碳氫化合物(hydrocarbon)氧化形成無害的CO2與H2O。
    在電化學觸媒電池的陽極處通入還原性氣體H2,因為其無發電效果,故H2並不會減少,而在陰極處通入富氧燃燒之引擎廢氣,經由電觸媒反應後,分析其出口氣體。富氧燃燒引擎主要包括氮氧化物(NOX)、氧氣(O2)、二氧化碳(CO2)、水氣(H2O)、二氧化硫(SO2),研究於不同NOX、CO2、H2O混和模擬廢氣通入電化學觸媒電池與觸媒是否會因為其electro-motive force(EMF)而在NOX轉化率有所差別,並在不同溫度下通入丙烯(C3H6)、丙烷(C3H8)。實驗結果證明NOX轉化率隨著氧濃度增加而上升,而CO2對於電觸媒與觸媒都有促進效果,而H2O會毒化觸媒導致NOX轉化率下降,而H2O對於電觸媒則是有增進的效果,而在不同溫度下,由於NOX低濃度為表面擴散(surface diffusion),故NOX轉化率隨著溫度越高而增加,NOX高濃度則是受到EMF的影響,隨著溫度上升,EMF轉化率下降,所以NOX的轉化率也隨之下降。
    新式電觸媒為Zirconia tube,結構更為堅固,而且可以自由的升降溫,在不同NOX濃度下,其NOX轉化率也能展現出V curve,隨著通入NOX濃度上升而上升,而低濃度也隨著濃度下降轉化率上升。而不同氧濃度也能隨著氧濃度上升,EMF上升導致NOX的轉化率上升。而且隨著氧濃度的上升,N2 yield能夠有效的提升。在陰極不同的流速下,高流速表現出高N2 formation rate,低流速表現出高NO conversion。在高濃度NOX反應時,隨著溫度的下降,NOX轉化率明顯的提升,且操作溫度可以降至室溫反應,EMF的提升更表現出NOX的高轉化率。在長時間操作下,H2 flow與H2 stagnant的NO轉化率並不會差距太大,且通入不同氧濃度的情況下,模擬休息時通入20%O2,再通入原本NOX濃度,仍舊有高NO轉化率。在陽極積碳部分,在100oC積碳結果比未積碳前轉化率來的高,而在陽極通入He與H2所造成的EMF,是以H2的EMF較高,且NOX轉化率較佳。在CH4積碳部分,以600OC積碳4小時最佳,做V curve與不同氧濃度皆呈現高轉化率。


    Diesel engine is a kind of lean-burn engines. Lean-burn engine can improve the efficiency of fuel using. Processing technology for nitric oxide should be more efforts to find new ways to solve this problem. The study of new technology is electrochemical-catalytic cells(ECC) that can used in low temperature. Inlet lean-burn engines exhaust gas can effective let nitric oxide transfer to nitrogen and oxides. And let not complete combustion of hydrocarbon transfer to carbon dioxide and water.
    At ECC anode site inlet reducing gas which is hydrogen. Because of the ECC doesn’t generate power, the hydrogen will not be reduced. At ECC cathode site inlet exhaust gas, analysis the outlet gas which including NOX , O2, CO2, H2O and SO2 via reaction of ECC cathode. Study different the amount of NOX, CO2 and H2O inlet ECC that can be how much electro-motive force(EMF) is. EMF will improve the NOX conversion. At different temperature inlet propane and propene. The experiment show that NOX conversion increased with increasing oxygen concentration. In the catalytic site inleting H2O will decay the NOX conversion,but doesn’t occur in ECC. In low NOX concentration, the rate determine step(R.D.S.) is Nads diffusion. In high NOX concentration, the R.D.S. is rate equation. The NOX conversion increased with increasing NOX concentration.
    The new electrochemical-catalytic cell is zirconia tube that the structure more hard then previously ECC. So it can free make thermal circle. At different NOX concentration, the NOX conversion is V curve with NOX concentration. The EMF and N2 yield increased with O2 concentration increasing. The different gas velocity at ECC cathode,the high gas velocity shows the high N2 formation rate;the low gas velocity shows the high NO conversion. And the high NOX concentration, the EMF increased with the temperature decreasing. At the anode site coking, at 100oC use the 1%CO coking 20 min that shows the high NOX conversion. The cause is that the coking carbon effectively increased the triple phase boundary(TPB).

    第一章 緒論 1 第二章 原理及文獻回顧 2 2-1 氮氧化物(NOX) 2 2-2 現今氮氧化物(NOX)處理技術 3 2-2-1直接分解氮氧化物(NOX decomposition) 5 2-2-2選擇性觸媒還原法(selective catalytic reduction, SCR) 6 2-2-3 CO還原法(NO reduction by CO) 8 2-2-4氮氧化物儲存還原法(NOX storage and reduction, NSR) 8 2-2-5利用外加電壓分解氮氧化物 9 2-2-6固態氧化物燃料電池(solid oxide fuel cell, SOFC) 10 2-2-7 電觸媒轉換器(Electrochemical-catalytic cells,ECC) 13 2-3固態氧化物燃料電池材料 15 2-3-1 固態氧化物燃料電池之陽極材料 15 2-3-2 固態氧化物燃料電池之電解質 16 2-3-3固態氧化物燃料電池之陰極材料 17 2-3-4陰極材料之鈣鈦礦結構材料 18 2-4 陰極材料Ag-perovskite 19 2-5 Hydrocarbon於陽極積碳 20 第三章 研究構想 21 第四章 實驗方法與步驟 24 4-1實驗藥品 24 4-2 製備方法 28 4-2-1 1wt%Ag/La0.6Sr0.4Co0.95Cu0.05O3-δ(Ag/LSCC) 28 4-2-2 Ce0.9Gd0.1O2-x(GDC) 29 4-2-3 1wt%Ag/LSCC-GDC 複合陰極材料之製備 30 4-2-4陽極支撐型半電池材料 30 4-2-5 陰極漿料之製備 31 4-3 實驗儀器 32 4-4實驗方法 34 4-4-1 電池單元製備 34 4-4-2 電池封裝 35 4-4-3 觸媒裝置 36 4-4-4 Zirconia tube 38 第五章 結果與討論 39 5-1 粉體製備之分析 39 5-1-1 LSACC(La0.54Sr0.36Ag0.1Co0.95Cu0.05O3-δ) 39 5-2 Ag/LSCC固態氧化物電觸媒之NOX催化 41 5-2-1 Ag/LSCC 電觸媒與觸媒於NOX轉化率 41 5-2-2 電觸媒與觸媒在不同氧濃度下時的NOX的轉化率 44 5-2-3 電觸媒與觸媒在不同CO2濃度下時的NOX的轉化率 47 5-2-4電觸媒與觸媒在不同H2O濃度下時的NOX的轉化率 49 5-2-5電觸媒在不同溫度下時的NOX的轉化率 50 5-2-6 電觸媒在不同溫度下時的N2 yield 54 5-2-7電觸媒在不同溫度下時丙烷與丙烯的NOX的轉化率 55 5-3 LSACC固態氧化物電觸媒之NOX催化 57 5-3-1 LSACC電觸媒不同NOX濃度下之NOX轉化率 57 5-3-2 LSACC電觸媒在不同氧濃度下時的NOX的轉化率 60 5-4 Ag/LSCC vs LSACC電觸媒NOX轉化率比較 62 5-4-1 Ag/LSCC vs LSACC電觸媒400oC與450oC不同NOX濃度 62 5-4-2 Ag/LSCC vs LSACC電觸媒不同O2濃度 64 5-5 LSACC Zirconia管型Pd-Ni/YSZ與LSACC電觸媒 67 5-5-1 探討Zirconia tube陽極Pd-Ni/YSZ通入氫氣的影響 67 5-5-2 Zirconia tube不同O2濃度下的轉化率 69 5-5-3 Zr管陽極Pd-Ni/YSZ陰極LSACC電觸媒不同溫度EMF影響 70 5-5-4 不同陰極流速下的NOX轉化率 74 5-6 Zirconia tube Ni/YSZ與LSACC電觸媒 77 5-6-1 Zirconia tube陰極面積對於NOX轉化率的關係 77 5-6-2 Zirconia tube part3的NO轉化率 78 5-6-3 模擬Zirconia tube長時間下操作 80 5-6-4 Zirconia tube CO積碳20min 82 5-6-5 在He stagnant情況下利用CH4積碳 85 第六章 結論 89

    1. Roy, S., M.S. Hegde, and G. Madras, Catalysis for NOx abatement. Applied Energy, 2009. 86(11): p. 2283-2297.
    2. Kašpar, J., P. Fornasiero, and N. Hickey, Automotive catalytic converters: current status and some perspectives. Catalysis Today, 2003. 77(4): p. 419-449.
    3. Fang, H.L. and H.F.M. DaCosta, Urea thermolysis and NOx reduction with and without SCR catalysts. Applied Catalysis B: Environmental, 2003. 46(1): p. 17-34.
    4. Tofan, C., D. Klvana, and J. Kirchnerova, Decomposition of nitric oxide over perovskite oxide catalysts: effect of CO2, H2O and CH4. Applied Catalysis B: Environmental, 2002. 36(4): p. 311-323.
    5. Shin’ichi, M., Recent advances in automobile exhaust catalysts. Catalysis Today, 2004. 90(3-4): p. 183-190.
    6. Wachsman, E.D., P. Jayaweera, G. Krishnan, and A. Sanjurjo, Electrocatalytic reduction of NOx on La1−xAxB1−yB′yO3−δ: evidence of electrically enhanced activity. Solid State Ionics, 2000. 136-137(0): p. 775-782.
    7. K, K., Electrochemical DeNOx in solid electrolyte cells—an overview. Applied Catalysis B: Environmental, 2005. 58(1-2): p. 33-39.
    8. Bredikhin, S., K. Hamamoto, Y. Fujishiro, and M. Awano, Electrochemical reactors for NO decomposition. Basic aspects and a future. Ionics, 2009. 15(3): p. 285-299.
    9. Sossina M, H., Fuel cell materials and components. Acta Materialia, 2003. 51(19): p. 5981-6000.
    10. Huang, T.-J., C.-Y. Wu, S.-H. Hsu, and C.-C. Wu, Complete emissions control for highly fuel-efficient automobiles via a simulated stack of electrochemical-catalytic cells. Energy & Environmental Science, 2011.
    11. Huang, T.-J., C.-Y. Wu, and Y.-H. Lin, Electrochemical Enhancement of Nitric Oxide Removal from Simulated Lean-Burn Engine Exhaust via Solid Oxide Fuel Cells. Environmental Science & Technology, 2011. 45(13): p. 5683-5688.
    12. Brosda, S., C.G. Vayenas, and J. Wei, Rules of chemical promotion. Applied Catalysis B: Environmental, 2006. 68(3-4): p. 109-124.
    13. Mizusaki, J., H. Tagawa, T. Saito, K. Kamitani, T. Yamamura, K. Hirano, S. Ehara, T. Takagi, T. Hikita, M. Ippommatsu, S. Nakagawa, and K. Hashimoto, Preparation of Nickel Pattern Electrodes on YSZ and Their Electrochemical Properties in H[sub 2]-H[sub 2]O Atmospheres. Journal of The Electrochemical Society, 1994. 141(8): p. 2129-2134.
    14. Mori, D., H. Oka, Y. Suzuki, N. Sonoyama, A. Yamada, R. Kanno, Y. Sumiya, N. Imanishi, and Y. Takeda, Synthesis, structure, and electrochemical properties of epitaxial perovskite La0.8Sr0.2CoO3 film on YSZ substrate. Solid State Ionics, 2006. 177(5-6): p. 535-540.
    15. K, K., Studies of Fe–Co based perovskite cathodes with different A-site cations. Solid State Ionics, 2006. 177(11-12): p. 1047-1051.
    16. Kusaba, H., Y. Shibata, K. Sasaki, and Y. Teraoka, Surface effect on oxygen permeation through dense membrane of mixed-conductive LSCF perovskite-type oxide. Solid State Ionics, 2006. 177(26-32): p. 2249-2253.
    17. John B, G., Ceramic solid electrolytes. Solid State Ionics, 1997. 94(1-4): p. 17-25.
    18. Hammou, Solid oxide fuel cell. CRC Handbook of Solid State Electrochemistry, 1997.
    19. Leng, Y.J., S.H. Chan, S.P. Jiang, and K.A. Khor, Low-temperature SOFC with thin film GDC electrolyte prepared in situ by solid-state reaction. Solid State Ionics, 2004. 170(1-2): p. 9-15.
    20. Weber, A. and E. Ivers-Tiffée, Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications. Journal of Power Sources, 2004. 127(1-2): p. 273-283.
    21. Xu, N., H. Zhao, X. Zhou, W. Wei, X. Lu, W. Ding, and F. Li, Dependence of critical radius of the cubic perovskite ABO3 oxides on the radius of A- and B-site cations. International Journal of Hydrogen Energy, 2010. 35(14): p. 7295-7301.
    22. Liu, Z., J. Hao, L. Fu, and T. Zhu, Study of Ag/La0.6Ce0.4CoO3 catalysts for direct decomposition and reduction of nitrogen oxides with propene in the presence of oxygen. Applied Catalysis B: Environmental, 2003. 44(4): p. 355-370.
    23. McIntosh, S., J.M. Vohs, and R.J. Gorte, Role of Hydrocarbon Deposits in the Enhanced Performance of Direct-Oxidation SOFCs. Journal of The Electrochemical Society, 2003. 150(4): p. A470-A476.
    24. Huang, T.-J., C.-Y. Wu, and C.-C. Wu, Lean-burn NOx emission control via simulated stack of solid oxide fuel cells with Cu-added (LaSr)MnO3 cathodes. Chemical Engineering Journal, 2011. 172(2-3): p. 665-670.
    25. Suski, L., J. Kołacz, G. Mordarski, and M. Ruggiero, Determination of open-circuit potentials at gas/electrode/YSZ boundary versus molten carbonate reference electrode at medium temperatures: I. Potentials of Au and Pt in O2 and H2 + H2O atmospheres. Electrochimica Acta, 2005. 50(14): p. 2771-2780.
    26. Huang, T.-J. and C.-L. Chou, Effect of O2 concentration on performance of solid oxide fuel cells with V2O5 or Cu added (LaSr)(CoFe)O3–(Ce,Gd)O2−x cathode with and without NO. Journal of Power Sources, 2009. 193(2): p. 580-584.
    27. Huang, T.-J. and I.C. Hsiao, Nitric oxide removal from simulated lean-burn engine exhaust using a solid oxide fuel cell with V-added (LaSr)MnO3 cathode. Chemical Engineering Journal, 2010. 165(1): p. 234-239.
    28. 周建良, 以La0.58Sr0.4Co0.2Fe0.8O3-δ為固態氧化物燃料電池陰極材料之研究. 國立清華大學化學工程研究所, 2009. 博士論文.
    29. Huang, T.-J., C.-Y. Wu, and C.-C. Wu, Simultaneous CO and NOx removal from simulated lean-burn engine exhaust via solid oxide fuel cell with La0.8Sr0.2Mn0.95Cu0.05O3 cathode. Electrochemistry Communications, 2011. 13(8): p. 755-758.
    30. Burch, R., J.P. Breen, and F.C. Meunier, A review of the selective reduction of NOx with hydrocarbons under lean-burn conditions with non-zeolitic oxide and platinum group metal catalysts. Applied Catalysis B: Environmental, 2002. 39(4): p. 283-303.
    31. Sun, L., Y. Hao, C. Zhang, R. Ran, and Z. Shao, Coking-free direct-methanol-flame fuel cell with traditional nickel–cermet anode. International Journal of Hydrogen Energy, 2010. 35(15): p. 7971-7981.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE