研究生: |
李志聰 Jyh-Tsung Lee |
---|---|
論文名稱: |
微米碳管之製備與鑑定及其場發射性質的研究 Preparation and Characterization of Micrometer-Sized Carbon Tubes and their Application for Electron Field Emission |
指導教授: |
韓建中
Chien-Chung Han |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 中文 |
論文頁數: | 363 |
中文關鍵詞: | 微米碳管 、形成機構 、石墨化 、陣列式微米碳管 、電子場發射 、聚對苯二甲酸乙二醇酯 、PPy |
外文關鍵詞: | micrometer-sized carbon tubes, formation mechanism, graphitization, carbon tube array, electron field emission, PET, polypyrrole |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主旨是以本實驗室近來所開發的新化學方法製備微米碳管,研究其形成機構、石墨化與性質的關係並探討其場發射的性質等。本論文共分七部分討論,分別為微米碳管之製備與鑑定(第三章)、微米碳管形成機構之探討(第四章)、利用不同塗佈材料製備微米碳管(第五章)、利用不同核心纖維製備微米碳管(第六章)、微米碳管石墨化之研究(第七章)、石墨化之微米碳管的熱穩定性(第八章)、和微米碳管之場發射性質的研究(第九章)。
我們利用熱穩定性良好的PPy(polypyrrole)為表層及PET纖維為核心之複合材料進行熱裂解碳化處理,可製造出數公分長且具有部分結構規則性的微米碳管。利用此一新的製備方法不但可以有效的控制碳管尺寸與管壁厚度。更可以透過使用適當的編織布或其他相關之材料,即可很容易地製造出具有二維或三維規則結構的碳管集合體。由Auger電子能譜、元素分析、粉末X-光繞射(XRD)、拉曼(Raman)光譜、固態碳-13核磁共振光譜的結果顯示這些碳管主要是由非晶的純碳(主要為不飽和之碳鍵結構)所組成,只含有少量的氮(小於3 wt %)和氫(小於1 wt %)存在。但當再以1000-2400 ℃更高的溫度進一步進行熱處理時,從掃描式電子顯微鏡(SEM)、XRD、Raman和穿透式電子顯微鏡(TEM)的結果發現碳管的結構由原本的非晶、均向性的碳轉變成具有規則方向性的石墨相。當熱處理溫度由1000升至2400 ℃時,碳管之石墨晶體(crystallite)不僅變大,而且其石墨的堆疊平面傾向與管軸平行,其具有與奈米碳管相似的結構。因其結構的規則性變佳及石墨平面具有優選方向,所以沿著碳管管軸方向的導電度會有明顯的增高,其熱穩定性也會有明顯的增高。進一步地,利用TEM的結果來討論結構與熱穩定性的關係。在熱分析方面(DTG),發現石墨化後碳管的DTG圖皆有三個訊號峰,且每一石墨化樣品(1600-2400℃)之最高溫度訊號峰的百分比,恰好與其XRD所估算的石墨化度比一致。此外,此三個訊號峰的位置會隨著熱處理溫度的上升而提高,由實驗結果暗示著,此三個訊號峰可能分別來自於disordered,turbostratic和graphitic carbon。
我們以各種光譜和分析方法,對PPy/PET複合纖維和碳管之形成機構做深入的探討。在此研究中顯示PPy塗佈層的品質、完整性和厚度是決定碳管生成與否的主要關鍵因素。由SEM發現PET於230-290 ℃開始融化,在390 ℃熱裂解殆盡而僅剩下外部的中空殼,且在碳化過程中,此中空管的口徑和壁厚是持續的縮小。同時在碳管的形成過程中,複合纖維會釋放出一些氣體和固體,其也一一的被分離或鑑定出來。所有結果皆顯示PPy的熱穩定性優於PET,這也就說明了碳管管壁的主要成分是來自於PPy塗佈層。此外,本研究也可利用不同的塗佈層(如PPy或Pani)或核心纖維(如PET、PP、Nylon、Silk、Cotton或木棉等)。由此可知此新的化學方法的確是可廣泛應用於製備碳管的策略。
利用polyacrylonitrile(PAN)做為管際間之黏結劑可將上述所製備之微米碳管更進一步製成密實且互相平行的陣列式微米碳管集合體。微米碳管和陣列式碳管束集合體的製備方面,已可充分的掌握其控制條件,在其長度、管徑和壁厚方面均可容易的控制其大小。以16微米的碳管而言,其長度可達數公分,壁厚為約0.2至數個微米大小。透過平坦化(planarization)的製程可製備更具水平的場發射截面,解決原本因高度不均勻而在量測上所產生的誤差問題。再利用電化學的方式對已平坦化之陣列式碳管束集合體截面做表面尖端化的蝕刻處理,將各別碳管之場發射面的尖端由微米尺寸縮小至奈米尺寸大小,可大大的提升了其場發射的能力。目前的研究結果顯示,其起動電壓已可從大於10伏特/微米降為3.8伏特/微米,且場發射之電子分佈得更為均勻。可見此陣列式微米碳管束集合體具有潛力成為新型的場發射電子源材料。
The main objects of this thesis include: (a) preparation of carbon tubes via a novel chemical approach, (b) investigation of their formation mechanism, (c) studying how the graphitization treatments affect their properties, and (d) application of these carbon tubes for electron field emitting.
Partially ordered micrometer-sized carbon tubes of several centimeters in length have been prepared via a new chemical approach by the pyrolysis of composite fibers consisting of a thermally more stable polypyrrole (PPy) skin layer and a PET core. The wall thickness of resultant hollow carbon tubes was found to be directly proportional to the thickness of the original PPy coating. Elemental analysis results indicated that these tubes essentially consisted of pure carbon, accompanied with small amount of N (< 3 wt %) and H (< 1 wt %). The use of single-pulse magic-angle-spinning solid-state 13C NMR showed that the carbon of these tubes was unsaturated in nature. The XRD diffraction pattern for the ground-up carbon tubes formed at 1000 °C showed two diffraction bands with the maxima at 2θ= 25.86 and 43.8°, which is equivalent to a d-spacing of 3.45 and 2.07 Å, respectively. The Raman spectrum for the same tubes showed two bands at ca. 1354 and 1584 cm-1. This new method enables the control on both the diameter and wall thickness of the carbon tubes. Most interestingly, it also provides a feasible method for the preparation of two or three dimensional well-organized carbon tube assembly from suitable woven fabrics or structures.
The formation mechanisms of the PPy/PET composite fibers and their corresponding carbon tubes have also been studied with the aids of various spectroscopic and analytical methods. The investigations indicated that the morphological quality, integrity, and thickness of the PPy coating layer are the most crucial properties in determining the success of obtaining hollow and opened carbon tube structures. Observations with SEM on the pyrolyzed samples indicated that the PET core of a composite fiber started to melt at between 230-290 ℃, then decomposed and almost disappeared at ca. 390 ℃, leaving behind only the hollow sheath. Both the diameter and wall-thickness of such hollow tube further decreased as the treatment temperature elevated during the subsequent carbonization stage. The released gaseous, as well as the sublimed solid by-products during the carbon tube formation process were also monitored and investigated. All results of the present study indicate that PPy is thermally more stable than PET, thus suggest that the carbon tube walls were mainly derived from the PPy skin layers. Moreover, to validate the general strategy employed in this study, other type of thermally stable conducting polymer (such as polyaniline) and other type of thermally removable fibers (such PP, Nylon, silk, cotton and wood cotton) has also being used as the respective skin layer and core fiber materials.
These resultant carbon tubes were found to be amorphous carbon. After further annealing at 1000-2400 ℃, the carbon tube structure was found, based on XRD, Raman, and TEM studies, to change gradually from a disordered amorphous phase to a highly ordered graphitic phase with preferred orientation. As the annealing temperature from 1000 to 2400 ℃, the graphitic crystallites of carbon tubes not only increased their sizes considerably but also tilted their stacking planes gradually toward the tube axis. Both SEM and SAD results implied that the 2400 ℃ annealed sample may have a cylindrical layer-stacking structure similar to those of carbon nanotubes. Accompanying these enhancements of structural ordering and orientational preference of the graphitic planes, the conductivity along the tube axis and the oxidative thermal stability of the corresponding carbon tubes was also found to increase significantly. Furthermore, the oxidative thermal stability results (obtained with TG-DTA) of these thermally annealed carbon tubes were correlated with their microstructures (observed with HRTEM). Interestingly, all the DTG (differential thermogravimetric) traces of these annealed carbon tubes (at between 1600-2400 ℃) can be resolved into three distinct peaks, with the area percent of the highest temperature peak being coincided with the graphitization index as measured by XRD. These three peaks appeared at the reaction temperatures ranging from low to high may be attributed to the contribution from the disordered, turbostratic, and graphitic carbons, respectively.
Our new chemical approach can also be utilized to prepare novel carbon-tube arrays that have hundreds or thousands of parallel carbon tubes in a bundle. Such assembled structures are believed to be particularly suitable for the application on electron field emitting displays. These carbon tube arrays, after being electrochemically etched to sharpen the tip of the individual carbon tubes within the bundle, were found to show rather good electron emitting properties, with the turn-on field being as low as 3.8 V/μm.
第一章
1.Dresselhaus, M. S.; Dresselhaus, G.; Eklund, P. C.; Satio, R.; Endo, M. In Carbon Nanotubes: Preparation and Properties; Ebbesen, T. W., Ed.; CRC Press: Boca, FL, 1997, p 7.
2.Wyckoff, R. W. G. In Crystal Structure, Vol. 1, Interscience, New York, 1964.
3.Thomas, C. R. In Essentials of Carbon- Carbon Composities; Thomas, C. R., Ed.; Royal Society of Chemistry: Cambridge, 1993, p 3.
4.(a)Dresselhaus, M. S.; Dresselhaus, G.; Sugihara, K.; Spain, I. L.; Goldberg, H. A. In Graphite Fibers and Filaments Spring-Verlag, Berlin, 1998, Vol. 5 of Springer Series in Materials Science. (b) Bokros, J. C.; In Chemistry and Physics of Carbon; Walker, P. L., Jr. Ed.; Marcel Dekker, New York, 1969, Vol. 5, p 1.
5.Dresselhaus, M. S.; Dresselhaus, G.; Eklund, P. C.; Satio, R.; Endo, M. In Carbon Nanotubes: Preparation and Properties; Ebbesen, T. W., Ed.; CRC Press: Boca, FL, 1997, p 5.
6.Taylor, H. S.; Neville, H. A. J. Am. Chem. Soc. 1921, 2055.
7.Jalan, B. P.; Ras, Y. K. Carbon 1978, 16, 175.
8.Walker, P. L.; Rusinko, F.; Austin, L. G. Adv. In Catalysis 1959, 11, 164.
9.Goto, K. S.; Han, K. H.; St Pierre, G. R. Trans. Iron Steel Inst. Jap. 1986, 26, 597.
10.Griffiths, J. A.; Marsh, H. Proc. 15th Biennial Conf. on Carbon, University of Pennsylvania, Philadelphia, USA, 22-26, Tune, 1981.
11.Savage, G. Carbon-Carbon Composites; Chapman and Hall: London, 1993, p 26.
12.(a) Bromely, J. In Carbon Fibers: Their Composites and Applications; Plastics Institute: London, 1971, p 3. (b) Watt, W. Green, J. In Carbon Fibers, Their Place in Modern Technology; Plastics Institute: London, 1974, p 23. (c) Watt, W.; Johnson, D. J.; Parker, E. In Carbon Fibers, Their Place in Modern Technology; Plastics Institute: London, 1974, p 3.
13.Watt, W. Carbon 1972, 10, 121.
14.Walker, E. J. In Essentials of Carbon-Carbon Composites; Thomas, C. R., Ed.; Royal Society of Chemistry: Cambridge, 1993, p 42.
15.Franklin, R. E. Proc. R. Soc. London, Ser. A 1951, 209, 196.
16.Franklin, R. E. Acta Cryst. 1951, 4, 253.
17.Maire, J.; Méring, J. In Proceeding of the First Conference of Society of Chemical and Industrial Conference on Carbon and Graphite, London, 1958, 204.
18.Oberlin, A.; Endo, M.; Koyama, T. J. Crystal Growth 1976, 32, 335.
19.Endo M. CHEMTECH 1988, 568.
20.(a) Iijima, S. Nature 1991, 354, 56. (b) Ebbesen T. W., Ajayan, P. M., Nature 1992, 358, 220.
21. (a) Heer, W. A. d.; Chatelain, A.; Ugarte, D. Science 1995, 270, 1179. (b) Heer, W. A. d.; Bonard, J.-M.; Fauth, K.; Chatelain, A.; Forro, L.; Ugarte, D. Adv. Mater. 1997, 9, 87.
22.Ebbesen, T. W.; Lezec, H. J.; Hiura, H.; Bennett, J. W.; Ghaemi, H. F.; Thio, T. Nature 1996, 382, 54.
23.(a) Dai, H.; Hafner, J. H.; Rinzler, A. G.; Colbert, D. T.; Smalley, R. E. Nature 1996, 384, 147. (b) Wong, S. S.; Joselevich, E.; Woolley, A. T.; Cheung, C. L.; Lieber, C. M. Nature 1998, 394, 52.
24.Freemantle, M. Chem. Eng. News 1996, 15, 62.
25.Kratschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. Nature 1990, 347, 354.
26. Thess, A.; Lee, R.; Nikolaev, P.; Dai, H.; Petit, P.; Robert, J.; Xu, C.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G.; Colbert, D. T.; Scuseria, G. E.; Tomanek, D.; Fischer, J. E.; Smalley, R. E. Science 1996, 273, 483.
27.Hsu, W. K.; Hare, J. P.; Terrones, M.; Kroto, H. W., Walton, D. R. M.; Harris, P. J. F. Nature 1995, 377, 687.
28.Kyotani, T.; Tsai, L. F.; Tomita, A. Chem. Mater. 1995, 7, 1427.
29.Terrones, M.; Grobert, N.; Olivares, J.; Zhang, J. P.; Terrones, H.; Kordatos, K.; Hsu, W. K.; Hare, J. P.; Townsend, P. D.; Prassides, K.; Cheetham, A. K.; Kroto, H. W.; Walton, D. R. M. Nature 1997, 388, 52.
30.Ajayan, P. M.; Ebbesen, T. W.; Ichihashi, T.; Iijima, S.; Tangigaki, K.; Hirua, H. Nature 1993, 362, 522. (b) Ajayan, P. M.; Iijima, S. Nature 1993, 361, 333. (c) Tsang, S. C.; Chen, Y. K.; Harris, P. J. F.; Green, M. L. H. Nature 1994, 372, 159. (d) Lago, R. M.; Tsang, S. C.; Chen, Y. K.; Green, M. L. H. Chem. Commun. 1995, 1355. (e) Kuan, Y.; Green, M. L. H.; Tsang, S. C. Chem. Commun. 1996, 2489.
31.Han, C. C.; Lee, J. T.; Yang, R. W.; Chang, H.; Han, C. H. Chem. Commun. 1998, 2087.
32.Han, C. C.; Lee, J. T.; Yang, R. W.; Chang, H.; Han, C. H. Chem. Mater. 1999, 11, 1086.
第二章
1.Ijima, S. Nature 1991, 354, 56.
2.Krataschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R.Nature 1990, 347, 354.
3.Mintmire, J. W.; Dunlap, B. I.; White, C. T. Phys. Rev. Lett. 1992, 68, 631.
4.Ebbesen, T. W.; Ajayan, P. M. Nature 1992, 358, 220.
5.Pederson, M. R.; Broughton, J. Q. Phys. Rev. Lett. 1992, 69, 2689.
6.Ajayan, P. M.; Iijima, S. Nature 1993, 361, 333.
7.(a) Calvert, P. Nature 1992, 257, 365. (b) Hamada, N.; Sawada, S.; Oshiyama, A. Phys. Rev. Lett. 1992, 68, 1579.
8.Ajayan, P. M.; Ebbesen, T. W.; Ichihashi, T.; Iijima, S. Tanigaki, K. Hiura, H. Nature 1993, 362, 522.
9.Satio, Y.; Yashikawa, T. J. Crys. Growth 1993, 134, 154.
10.(a) Oberlin, A.; Endo, M.; Koyama, T. J. Crystal Growth 1976, 32, 335. (b) Endo, M. CHEMTECH 1988, 18, 568.
11.Li, W. Z.; Xie, S. S.; Qian, L. X.; Chang, B. H.; Zou, B. S.; Zhou, W. Y.; Zhao, R. A.; Wang, G. Science 1996, 274, 1701.
12.Terrones, M.; Grobert, N.; Olivares, J.; Zhang, J. P.; Terrones, H.; Kordatos, K.; Hsu, W. K.; Hare, J. P.; Townsend, P. D.; Prassides, K.; Cheetham, A. K.; Kroto, H. W.; Walton, D. R. M. Nature 1997, 388, 52.
13.Ren, Z. F.; Huang, Z. P.; Xu, J. W.; Wang, J. H.; Bush, P.; Siegal, M. P.; Provencio, P. N. Science 1998, 282, 1105.
14.Fan, S.; Chapline, M. G.; Franklin, N. R.; Tombler, T. W.; Cassell, A. M.; Dai, H. Science 1999, 283, 512.
15.Dai, H.; Rinzler, A. G.; Nikolaev, P.; Thess, A.; Cobert, D. T.; Smalley, R. E. Chem. Phys. Lett. 1996, 260, 483.
16.Kosakovskaja, Z. J.; Chernozatonskii, L. A.; Fedorov, E. A. JETP Letter 1992, 56, 26.
17.Chernozatonskii, L. A.; Kosakovskaja, Z. J.; Kiselev, A. N.; Kiselev, N. A. Chem. Phys. Lett. 1994, 228, 94.
18.(a) Ge, M.; Sattler, K. Science 1993, 260, 515. (b) Ge, M.; Sattler, K. Appl. Phys. Lett. 1994, 65, 2284.
19.Guo, T.; Nikolaev, B.; Rinzler, A. G.; Tomanek, D.; Colbert, D.T.; Smalley, R. E. J. Phys. Chem. 1995, 99, 10694.
20.Thess, A.; Lee, R.; Nikolaev, P.; Dai, H.; Petit, P.; Robert, J.; Xu, C.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G.; Colbert, D. T.; Scuseria, G.; Tomanek, D.; Smalley, R. E. Science 1996, 273, 483.
21.Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Smalley, R. E. Nature 1985, 218, 162.
22.(a) Haufler, R. E.; Chai, Y.; Chibante, L. P. F.; Fraelich, M. R. J. Chem. Phys. 1991, 95, 7197. (b) Smalley, R. E. Acc. Chem. Res. 1992, 25, 98.
23.Yamamoto, K.; Koga, Y.; Fuijumara, S.; Kubota, M. Appl. Phys. Lett. 1996, 69, 4174.
24.Hatta, K.; Murata, K. Chem. Phys. Lett. 1994, 217, 398.
25.Kyotani, T.; Tsai, L. F.; Tomita, A. Chem. Mater. 1995, 7, 1427.
26.Hsu, W. K.; Hare, J. P.; Terrones, M.; Kroto, H. W.; Walton, D. R. M.; Harris, P. J. F. Nature 1995, 337, 687.
27.Matveev, A. T.; Golberg, D.; Novikov, V. P.; Klimkovich, L. L.; Bando, Y. Carbon 2001, 39, 137.
28.Koresh, J. E.; Sofer, A. Sep. Sci. Technol. 1983, 18, 723.
29.內容主要參考來源為(網址):(a) http://www.candescent.com/, (b) http://www.motorola.com/
30.Iannazzo, S. Solid-State Electronics 1993, 36, 301.
31.Modinos, A. Field Thermionic and Secondary Electron Emission Spectroscopy, Plenim Press: New York, 1984.
32.Kirkpatrick, D. A.; Mankofsky, A.; Tsang, K. T. Appl. Phys. Lett. 1992, 60, 2065.
33.Dolin, D. E.; Sosunov, A. A.; Suvorov, A. L.; Sheshin, E. P. Sov. Phys. Tech. Phys. 1990, 35, 1430.
34.Mousa, M. S. J. Phys. 1987, 11, C6.
35.Mousa, M. S.; Holland, C. E.; Brodie, I.; Spindt, C. A. Appl.Surf. Sci. 1993, 67, 218.
36.Mousa, M. S. Applied. Surf. Sci. 1996, 94/95, 129.
37.(a) Heer, W. A. de; Chatelain, A.; Ugarte, D. Science 1995, 270, 1179. (b) Heer, W. A. de; Bonard, J.-M., Fauth, K.; Chatelain, A.; Forro, L.; Ugarte, D. Adv. Mater. 1997, 9, 87.
38.Fan, S.; Chapline, M. G., Franklin, N. R.; Tombler, T. W.; Cassell, A. M.; Dai, H. Sicence 1999, 283, 512.
第三章
1.(a) Iijima, S.; Ichihashi, T.; Ando, Y. Nature 1992, 356, 776. (b) Amelinckx, S.; Zhang, X. B.; Bernaerts, D.; Zhang, X. F.; Ivanov, V.; Nagy, J. B. Science 1994, 265, 635.
2.(a) Heer, W. A. d.; Chatelain, A.; Ugarte, D. Science 1995, 270, 1179. (b) Heer, W. A. d.; Bonard, J.-M.; Fauth, K.; Chatelain, A.; Forro, L.; Ugarte, D. Adv. Mater. 1997, 9, 87.
3.Ebbesen, T. W.; Lezec, H. J.; Hiura, H.; Bennett, J. W.; Ghaemi, H. F.; Thio, T. Nature 1996, 382, 54.
4.(a) Dai, H.; Hafner, J. H.; Rinzler, A. G.; Colbert, D. T.; Smalley, R. E. Nature 1996, 384, 147. (b) Wong, S. S.; Joselevich, E.; Woolley, A. T.; Cheung, C. L.; Lieber, C. M. Nature 1998, 394, 52.
5.Freemantle, M. Chem. Eng. News 1996, July 15, 62.
6.(a) Iijima, S. Nature 1991, 354, 56. (b) Ebbesen T. W., Ajayan, P. M., Nature 1992, 358, 220.
7.Thess, A.; Lee, R.; Nikolaev, P.; Dai, H.; Petit, P.; Robert, J.; Xu, C.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G.; Colbert, D. T.; Scuseria, G. E.; Tomanek, D.; Fischer, J. E.; Smalley, R. E. Science 1996, 273, 483.
8.Hsu, W. K.; Hare, J. P.; Terrones, M.; Kroto, H. W., Walton, D. R. M.; Harris, P. J. F. Nature 1995, 377, 687.
9.Kyotani, T.; Tsai, L. F.; Tomita, A. Chem. Mater. 1995, 7, 1427.
10.Endo, M. CHEMTECH. 1988, 568.
11.Terrones, M.; Grobert, N.; Olivares, J.; Zhang, J. P.; Terrones, H.; Kordatos, K.; Hsu, W. K.; Hare, J. P.; Townsend, P. D.; Prassides, K.; Cheetham, A. K.; Kroto, H. W.; Walton, D. R. M. Nature 1997, 388, 52.
12.(a) Ajayan, P. M.; Ebbesen, T. W.; Ichihashi, T.; Iijima, S.; Tangigaki, K.; Hirua, H. Nature 1993, 362, 522. (b) Ajayan, P. M.; Iijima, S. Nature 1993, 361, 333. (c) Tsang, S. C.; Chen, Y. K.; Harris, P. J. F.; Green, M. L. H. Nature 1994, 372, 159. (d) Lago, R. M.; Tsang, S. C.; Chen, Y. K.; Green, M. L. H. Chem. Commun. 1995, 1355. (e) Kuan, Y.; Green, M. L. H.; Tsang, S. C. Chem. Commun. 1996, 2489.
13.Tsang, S. C.; Davis, J. J.; Green, M. L. H.; Hill, H. A. O.; Leung, Y. C.; Sadler, P. J. Chem. Commun. 1995, 1803.
14.Yang, M. C.; Yu, D. G.; J. Appl. Polym. Sci. 1998, 68, 1331.
15.Han, C. C.; Lee, J. T.; Yang, R. W.; Chung, H.; Han, C. H. Chem. Commun. 1998, 2087.
16.(a) Kuhn, H. H.; Child, A. D.; Kimbrell, W. C. Synth. Met. 1995, 71, 2139. (b) Gregory, R.; Kimbrell, W.; Kuhn, H. Synth. Met. 1989, 28, C823.
17.Kowbel, W.; Hippo, E.; Murdie, N. Carbon 1989, 27, 219.
18.Socrates, G. Infrared Characteristic Group Frequencies. Tables and Charts. 2nd Ed., John Wiley & Sons: New York, 1994.
19.Allen, N. S.; Murray, K. S.; Fleming, R. J.; Saunders, B. R. Synth. Met. 1997, 87, 237.
20.(a) Myers, R. E. J. Electron. Mater. 1986, 15, 61. (b) Kang, E. T., Tan, T. C.; Neoh, K. G.; Ong, Y. K. Polymer 1986, 27, 1958. (c) De Poli, M. A.; Waltman, R. J.; Diaz, A. F.; Bargon, J. J. Polym. Sci.: Polym. Chem. 1985, 23, 1687. (d) Street, G. B.; Clarke, T. C., Krounbi, M.; Kanazawa, V. Lee, Pfluger, P., Scott, J. C.; Weiser, G. Mol. Cryst. Liq. Cryst. 1982, 83, 253.
21.(a) Kyotani, T.; Sonobe, N.; Tomita, A. Nature 1988, 331, 331. (b) Niwase, K.; Tanaka, T.; Kakimoto, Y.; Ishihara, K. N.; Shingu, P. H. Mater. Trans., JIM 1995, 36, 282.
22.(a) R. E. Franklin, Acta Cryst. 1951, 4, 253. (b) Carbon Nanotubes: Preparation and Properties; Ebbesen, T. W. (editor); CRC Press, Inc.: Boca Raton, New York, London and Tokyo, 1997.
23.Chung, D. D. L.; DeHaven, P. W.; Arnold, H.; Ghosh, D. X-ray Diffraction at Elevated Temperatures: A Method for In Situ Process Analysis, VCH Publishers, Inc.: New York, 1993.
第四章
1.(a) Iijima, S.; Ichihashi, T.; Ando, Y. Nature, 1992, 356, 776. (b) Amelinckx, S.; Zhang, X. B.; Bernaerts, D.; Zhang, X. F.; Ivanov, V.; Nagy, J. B. Science 1994, 265, 635.
2.(a) Heer, W. A. d.; Chatelain, A.; Ugarte, D. Science, 1995, 270, 1179. (b) Heer, W. A. d.; Bonard, J.-M.; Fauth, K.; Chatelain, A.; Forro, L.; Ugarte, D. Adv. Mater. 1997, 9, 87.
3.Ebbesen, T. W.; Lezec, H. J.; Hiura, H.; Bennett, J. W.; Ghaemi, H. F.; Thio, T. Nature, 1996, 382, 54.
4.(a) Dai, H.; Hafner, J. H.; Rinzler, A. G.; Colbert, D. T.; Smalley, R. E. Nature, 1996, 384, 147. (b) Wong, S. S.; Joselevich, E.; Woolley, A. T.; Cheung, C. L.; Lieber, C. M. Nature, 1998, 394, 52.
5.Freemantle, M. Chem. Eng. News 1996, July 15, 62.
6.(a) Iijima, S. Nature, 1991, 354, 56. (b) Ebbesen T. W., Ajayan, P. M., Nature, 1992, 358, 220.
7.Han, C. C.; Lee, J. T.; Yang, R. W.; Chung, H.; Han, C. H. Chem. Commun., 1998, 2087.
8.Han, C. C.; Lee, J. T.; Yang, R. W.; Chung, H.; Han, C. H. Chem. Mater. 1999, 11, 1806.
9.Kageyama, K.; Tamazawa, J.-I.; Aida, T. Science 1999, 285, 2113.
10.(a) Qiu, Y.-J.; Reynolds, J. R. Polym. Eng. & Sci. 1991, 31, 417. (b) Diaz, A. F.; Bargon, J. in chapter 3 of Handbook of Conducting Polymers Skotheim T. A., Ed.; Marcel Dekker, Inc.: New York and Basel, 1986, Vol. 1.
11.(a) Handbook of Organic Conductive Molecules and Polymers; Nalwa, H. S., Ed.; John Wiley & Sons: Chichester and New York, 1997, Vol. 1-4. (b) Handbook of Conducting Polymers; Skotheim, T. A., Ed.; Marcel Dekker, Inc.: New York and Basel, 1986, Vol. 1-2.
12.Qian, R.; Qin, J. Polymer J. 1987, 19, 157.
13.Endo, M.; Takeuchi, K.; Igarashi, S.; Kobori, K.; Shiraishi, M.; Kroto, H. W. J. Phys. Chem. Solids 1993, 54, 1841.
14.(a) Iijima, S.; Ichihashi, T. Nature 1993, 363, 603. (b) Bethune, D. S.; Kiang, C. H.; de Vries, M. S.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R. Nature 1993, 363, 605.
15.(a) Savage, G. Carbon-Carbon Composites, Chapman & Hall, London, 1993, p48. (b) Henrici-Olivé, G.; Olivé, S. in Industrial Developments (Advances in Polymer Science, 51), Springer-Verlag, Heidelberg. 1983, 1.
16.Montaubo, G.; Puglisi, C.; Samperi, F. Polym. Deg. & Stab. 1993, 42, 13.
17.Pouchert, C. J. The Aldrich Library of FT-IR Spectra Edition I; Aldrich Chemical Company: Wisconsin, 1989, Vol. 3.
18.(a) Frisch, M. J.; Schaefer III, H. F.; Binkley, J. S. J. Phys. Chem. 1985, 89, 2192. (b) Callomon, H. J.; Hirota, E.; Kuchitsu, K.; Lafferty, W. J.; Maki, A. G.; Potein, C. S. In Numerical Data and Function Relationships in Science and Technology, vol. 7; Hellwege, K. H. Ed.; Springer-Verlag: West Berlin, 1976.
19.Kim, K.; King, W. T. J. Chem. Phys. 1979, 71, 1967.
20.Socrates, G. Infrared Characteristic Group Frequencies. Tables and Charts. 2nd Ed., John Wiley & Sons: New York, 1994.
21.Buxbaum, L. H. Angew. Chem., Int. Ed. 1968, 7, 182.
22.Watt, W. Carbon 1972, 10, 121.
23.Trung, V.T.; Ennis, B. C.; Turner, T. G.; Jenden, C. M. Polym. Int. 1992, 27, 187.
第五章
1.(a) Han, C. C.; Lee, J. T.; Yang, R. W.; Chung, H.; Han, C. H. Chem. Commun. 1998, 2087. (b) Han, C. C.; Lee, J. T.; Yang, R. W.; Chung, H.; Han, C. H. Chem. Mater. 1999, 11, 1086.
2. (a) Han, C. C.; Hong, S. P.; Yang, K. F.; Bai, M. Y.; Lu, C. H.; Huang, C. S. Macromolecules 1999, 11, 480. (b) Han, C. C.; Jeng, R. C. Chem. Commun. 1997, 553. (c) Han, C. C.; Hseih, W. D.; Yeh, Hong, S. P. Chem. Mater. 1999, 11, 480.
3.Kageyama, K.; Tamazawa, J. I.; Aida, T Science 1999, 285, 2113.
4. (a) Kuhn, H. H.; Child, A. D.; Kimbrell, W. C. Synth. Met. 1995, 71, 2139. (b) Gregory, R.; Kimbrell, W.; Kuhn, H. Synth. Met. 1989, 28, C823.
5.Wei, Y.; Tang, X.; Sun, Y.; Focke, W. W. J. Polym. Sci., Polym. Chem. 1989, 27, 2385. (b) Zotti, G.; Cattarin, S.; Commisso, N. J. Electroanal. Chem. 1998, 239, 387. (c) Sasaki, K.; Kaya, M.; Yano, J.; Kitani, A.; Kunai, A. J. Electroanal. Chem. 1986, 215, 401. (d) Dousch, L. Electroanal. Chem. Interfacial Electrochem. 1975, 61, 61.
6.(a) Handbook of Organic Conductive Molecules and Polymers; Nalwa, H. S., Ed.; John Wily & Sons: Chichester, 1997, Vols. 1-4. (b) Handbook of Conductive Polymers; Skotheim, T. A., Ed.; Marcel Dekker: New York, 1986, Vols. 1and 2.
7.Endo, M.; Takeuchi, K.; Igarashi, S.; Kobori, K.; Shiraishi, M.; Kroto, H. W. J. Phys. Chem. Solids 1993, 54, 1841.
8.Kowbel, W.; Hippo, E.; Murdie, N. Carbon, 1989, 27, 219.
9.Socrates, G. Infrared Characteristic Group Frequencies. Tables and Charts. 2nd Ed., John Wiley & Sons: New York, 1994.
10.(a) Tang, J.; Jing, X.; Wang, B.; Wang, F. Synth. Met. 1998, 24, 231. (b) Furukawa, Y.; Ueda, F.; Hyodo, Y.; Harada, I.; Nakajima, T.; Kawagoe, T Macromolecules 1988, 21, 1297. (c) Sariciftci, N. S.; Kuzmany, H.; Neugebauer, H.; Neckel, A. J. Chem. Phys. 1990, 92, 4530. (d) Wudl, F.; Angus, R. O., Jr.; Allemand, P. M.; Vachon, D. J.; Norwak, M.; Liu, Z. X.; Heeger, A. J. J. Am. Chem. Soc. 1987, 109, 3677.
第六章
1.(a) Iijima, S.; Ichihashi, T.; Ando, Y. Nature 1992, 356, 776. (b) Amelinckx, S.; Zhang, X. B.; Bernaerts, D.; Zhang, X. F.; Ivanov, V.; Nagy, J. B. Science 1994, 265, 635.
2.(a) Heer, W. A. d.; Chatelain, A.; Ugarte, D. Science, 1995, 270, 1179. (b) Heer, W. A. d.; Bonard, J.-M.; Fauth, K.; Chatelain, A.; Forro, L.; Ugarte, D. Adv. Mater. 1997, 9, 87.
3.Ebbesen, T. W.; Lezec, H. J.; Hiura, H.; Bennett, J. W.; Ghaemi, H. F.; Thio, T. Nature 1996, 382, 54.
4.(a) Dai, H.; Hafner, J. H.; Rinzler, A. G.; Colbert, D. T.; Smalley, R. E. Nature 1996, 384, 147. (b) Wong, S. S.; Joselevich, E.; Woolley, A. T.; Cheung, C. L.; Lieber, C. M. Nature 1998, 394, 52.
5.Freemantle, M. Chem. Eng. News, July 15, 1996, p62.
6.(a) Iijima, S. Nature 1991, 354, 56. (b) Ebbesen T. W., Ajayan, P. M., Nature 1992, 358, 220.
7.Thess, A.; Lee, R.; Nikolaev, P.; Dai, H.; Petit, P.; Robert, J.; Xu, C.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G.; Colbert, D. T.; Scuseria, G. E.; Tomanek, D.; Fischer, J. E.; Smalley, R. E. Science 1996, 273, 483.
8.Hsu, W. K.; Hare, J. P.; Terrones, M.; Kroto, H. W., Walton, D. R. M.; Harris, P. J. F. Nature 1995, 377, 687.
9.Kyotani, T.; Tsai, L. F.; Tomita, A. Chem. Mater. 1995, 7, 1427.
10.Endo, M. CHEMTECH. 1988, 568.
11.Terrones, M.; Grobert, N.; Olivares, J.; Zhang, J. P.; Terrones, H.; Kordatos, K.; Hsu, W. K.; Hare, J. P.; Townsend, P. D.; Prassides, K.; Cheetham, A. K.; Kroto, H. W.; Walton, D. R. M. Nature 1997, 388, 52.
12.(a) Ajayan, P. M.; Ebbesen, T. W.; Ichihashi, T.; Iijima, S.; Tangigaki, K.; Hirua, H. Nature 1993, 362, 522. (b) Ajayan, P. M.; Iijima, S. Nature 1993, 361, 333. (c) Tsang, S. C.; Chen, Y. K.; Harris, P. J. F.; Green, M. L. H. Nature, 1994, 372, 159. (d) Lago, R. M.; Tsang, S. C.; Chen, Y. K.; Green, M. L. H. Chem. Commun. 1995, 1355. (e) Kuan, Y.; Green, M. L. H.; Tsang, S. C. Chem. Commun. 1996, 2489.
13.Tsang, S. C.; Davis, J. J.; Green, M. L. H.; Hill, H. A. O.; Leung, Y. C.; Sadler, P. J. Chem. Commun. 1995, 1803.
14.(a) Han, C. C.; Lee, J. T.; Yang, R. W.; Chung, H.; Han, C. H. Chem. Commun. 1998, 2087. (b) Han, C. C.; Lee, J. T.; Yang, R. W.; Chung, H.; Han, C. H. Chem. Mater. 1999, 11, 1086.
15. (a) Han, C. C.; Hong, S. P.; Yang, K. F.; Bai, M. Y.; Lu, C. H.; Huang, C. S. Macromolecules 1999, 11, 480. (b) Han, C. C.; Jeng, R. C. Chem. Commun. 1997, 553. (c) Han, C. C.; Hseih, W. D.; Yeh, Hong, S. P. Chem. Mater. 1999, 11, 480.
16.Kageyama, K.; Tamazawa, J. I.; Aida, T Science 1999, 285, 2113.
17. (a) Kuhn, H. H.; Child, A. D.; Kimbrell, W. C. Synth. Met. 1995, 71, 2139. (b) Gregory, R.; Kimbrell, W.; Kuhn, H. Synth. Met. 1989, 28, C823.
第七章
1.(a) Han, C. C.; Lee, J. T.; Yang, R. W.; Chung, H.; Han, C. H. Chem. Commun. 1998, 2087. (b) Han, C. C.; Lee, J. T.; Yang, R. W.; Chung, H.; Han, C. H. Chem. Mater. 1999, 11, 1806.
2.Kageyama, K.; Tamazawa, J.-I.; Aida, T. Science 1999, 285, 2113.
3.Gregory, R. V.; Kimbrell, W. C.; Kuhn, H. H. Synth. Met. 1989, 28, C823.
4.Azzeer, A. M.; Silber, L. M.; Spain, I. L.; Patton, C. E.; Goldberg, H. A. J. Appl. Phys. 1985, 57, 2529.
5.Elliott, R. S. An Introduction to Guided Waves and Microwave Circuits Prentice-Hall Inc, New Jersey, 1989, 251.
6.ibid, 1989, 267.
7.Han, C. C.; Lee, J. T.; Yang, R. W.; Han, C. H. Formation Mechanism of Micrometer-Sized Carbon Tubes, accepted by Mater. Chem. 2001 for publication.
8.(a) Goodhew, P. J.; Clarke, A. J.; Bailey, J. E. Mater. Sci. Eng. 1975, 17, 30. (b) Sonobe, N; Kyotani, T.; Hishiyama, Y.; Shiraishi, M.; Tomita, A. J.Phys. Chem. 1998, 92, 7029.
9.(a) Klung, H. P.; Alexnder, L. E. X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, Wily, New York 1974. (b) Bragg, W. L. Proc. Camb. Phil. Soc. 1912, 17, 43.
10.Franklin, R. Acta Cryst. 1951, 4, 253.
11.Chung, D. D. L.; DeHaven, P. W.; Arnold, H.; Ghosh, D. X-Ray Diffraction at Elevated Temperatures: A Method for In Situ Process Analysis, VCH Publishers, Inc.: New York, 1993.
12.Kowbel, W.; Hippo, E.; Murdie, N. Carbon 1989, 27, 219.
13.(a) Endo, M.; Saito, R.; Dresselhaus, M. S.; Dresselhaus, G. In Carbon Nanotubes: Preparation and Properties, Ebbesen, T. W., Ed., CRC Press, Florida, 1997, 69. (b) Maire, J.; Mèring, J. In Proceedings of the First Conference of the Society and Industrial Conference on Carbon and Graphite, London, 1958, 204.
14.(a) Kyotani, T.; Sonobe, N.; Tomita, A. Nature 1988, 331, 331. (b) Niwase, K.; Tanaka, T.; Kakimoto, Y.; Ishihara, K. N.; Shingu, P. H. Mater. Trans., JIM, 1995, 36, 282.
15.Endo, M.; Kim, C.; Karaki, T.; Kasai, T.; Matthews, M. J.; Brown, D. M.; Dresselhaus, M. S.; Tamaki, T.; Nishimura, Y. Carbon 1998, 11, 1633.
16.Wieder, H. H. Laboratory Notes on Electrical and Galvanomagnetic Measurements; Elsevier Scientific Publishing Co., Amsterdam, 1979.
17.Griffiths, D. J. Introduction to Electrodynamics 2th Ed., Prentice-Hall Inc, New Jersey, 1993, 371.
18.Elliott, R. S. An Introduction to Guided Waves and Microwave Circuits Prentice-Hall Inc, New Jersey, 1989, 183.
19.Grant, F. A. Rev. Mod. Phys. 1959, 31, 646.
20.(a) Yuan, Z.; Zhang, L. Nanostructureed Materials 1998, 10, 1127. (b) Ohska, T.; Yamaoka, S.; Shimomara, O Solid State Communication 1979, 30, 345.
21.Swift, G. A.; Koc, R. J. Mater. Sci. 1999, 34, 3083.
第八章
1.(a) Iijima, S.; Ichihashi, T.; Ando, Y. Nature 1992, 356, 776. (b) Amelinckx, S.; Zhang, X. B.; Bernaerts, D.; Zhang, X. F.; Ivanov, V.; Nagy, J. B. Science 1994, 265, 635.
2.(a) Heer, W. A. d.; Chatelain, A.; Ugarte, D. Science 1995, 270, 1179. (b) Heer, W. A. d.; Bonard, J.-M.; Fauth, K.; Chatelain, A.; Forro, L.; Ugarte, D. Adv. Mater. 1997, 9, 87.
3.Ebbesen, T. W.; Lezec, H. J.; Hiura, H.; Bennett, J. W.; Ghaemi, H. F.; Thio, T. Nature 1996, 382, 54.
4.(a) Dai, H.; Hafner, J. H.; Rinzler, A. G.; Colbert, D. T.; Smalley, R. E. Nature 1996, 384, 147. (b) Wong, S. S.; Joselevich, E.; Woolley, A. T.; Cheung, C. L.; Lieber, C. M. Nature 1998, 394, 52.
5.Freemantle, M. Chem. Eng. News 1996, July 15, 62.
6.(a) Iijima, S. Nature 1991, 354, 56. (b) Ebbesen T. W., Ajayan, P. M., Nature 1992, 358, 220.
7.Thess, A.; Lee, R.; Nikolaev, P.; Dai, H.; Petit, P.; Robert, J.; Xu, C.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G.; Colbert, D. T.; Scuseria, G. E.; Tomanek, D.; Fischer, J. E.; Smalley, R. E. Science 1996, 273, 483.
8.Hsu, W. K.; Hare, J. P.; Terrones, M.; Kroto, H. W., Walton, D. R. M.; Harris, P. J. F. Nature 1995, 377, 687.
9.Kyotani, T.; Tsai, L. F.; Tomita, A. Chem. Mater. 1995, 7, 1427.
10.Endo, M. Chemtech., 1988, 568.
11.Terrones, M.; Grobert, N.; Olivares, J.; Zhang, J. P.; Terrones, H.; Kordatos, K.; Hsu, W. K.; Hare, J. P.; Townsend, P. D.; Prassides, K.; Cheetham, A. K.; Kroto, H. W.; Walton, D. R. M. Nature 1997, 388, 52.
12.(a) Han, C. C.; Lee, J. T.; Yang, R. W.; Chung, H.; Han, C. H. Chem. Commun. 1998, 2087. (b) Han, C. C.; Lee, J. T.; Yang, R. W.; Chung, H.; Han, C. H. Chem. Mater. 1999, 11, 1806.
第九章
1.Han, C. C.; Lee, J. T.; Yang, R. W.; Chang, H.; Han, C. H. Chem. Commun., 1998, 2087.
2.Han, C. C.; Lee, J. T.; Yang, R. W.; Chung, H.; Han, C. H. Chem. Mater. 1999, 11, 1806.
3.(a) Kuhn, H. H.; Child, A. D.; Kimbrell, W. C. Synth. Met. 1995, 71, 2139. (b) Gregory, R.; Kimbrell, W.; Kuhn, H. Synth. Met. 1989, 28, C823.
4.(a) Savage, G. Carbon-Carbon Composites, Chapman & Hall, London, 1993, p48. (b) Henrici-Olivé, G.; Olivé, S. in Industrial Developments (Advances in Polymer Science, 51), Springer-Verlag, Heidelberg. 1983, 1.
5.(a) Baldwin, R.P.; Jones, K. F.; Joseph, J. T.; Wong, J. L. Fuel 1981, 60, 739. (b) Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueos Solution, Pergammon Press, London 1966, p453. (c) Mousa, M. S. Applied. Surf. Sci. 1996, 94/95, 129.
6.Fowler, R. H.; Nordheim, L. W. Proc. R. London, Ser. A 1928, 119, 173.
7.(a) de Heer, W. A.; Châtelain, A.; Ugarte, D. Science 1995, 270, 1179. (b) de Heer, W. A.;Bonard, J. M.; Fauth, K.; Châtelain, A.; Forró, L.; Ugarte, D. Adv. Mater. 1997, 9, 87.
8.Bonard, J. M.; Salvetat, J. P.; Stöckli, T.; de Heer, W. A.; Fauth, K.; Forró, L.; Châtelain, A. Appl. Phys. Lett.1998, 73, 918.