研究生: |
謝長志 Hsieh, Chang-Chih |
---|---|
論文名稱: |
修補鐵硫簇蛋白質 YtfE 與一氧化氮的反應性探討及以非血基質雙鐵金屬離子錯合物對氧氣和亞硝酸鹽的活化反應研究探討 Reactivity of the Repair of Iron Centers Protein YtfE toward NO, and the Activation of Oxygen and Nitrite Molecules by Non-heme Diiron Complex |
指導教授: |
廖文峯
Liaw, Wen-Feng 洪義盛 Horng, Yih-Chern |
口試委員: |
王雲銘
Wang, Yun-Ming 洪政雄 Hung, Chen-Hsiung 江昀緯 Chiang,Yun-Wei |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 113 |
中文關鍵詞: | 一氧化氮 、小分子活化 、氧氣 、亞硝酸根 |
外文關鍵詞: | YtfE, small molecule activation |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
藉由使用 X-ray 晶體繞射成功獲得 YtfE (C30A/C31A) 的蛋白質晶體結構,並利用 EPR 及 17O 標定的 ESEEM 實驗來對蛋白質內部雙鐵金屬中心進行詳細的分析鑑定。而在中心的鐵離子是呈現一個扭曲的八面體型,分別由兩個組胺酸、兩個架橋的穀胺酸上的羧酸基、一個橋氧基及一個空配位所組成。而在蛋白質內部也同時發現有兩個孔道可以由外部通往雙鐵金屬中心,而孔道內徑可以容許傳遞分子大小類似於一氧化氮、水及一氧化二氮等小分子。在測試 YtfE 對於一氧化氮的反應性及親和性的實驗中,發現 YtfE 對於一氧化氮有很好的親和力,且也能藉由添加還原劑到亞硝基化的 YtfE ([FeIII(NO)-FeIII(NO)]) 中,將鐵離子上鍵結的一氧化氮分子還原成一氧化二氮。而從實驗結果我們認為 YtfE 可能扮演一個一氧化氮的清除者來藉以保護本身不受一氧化氮的破壞及保持自己本身的氧化還原狀態,使其可以維持修補被破壞的鐵硫簇蛋白質的功能。
錯合物 ((LNHS)2Fe)2 (1) 成功地被利用來活化氧氣或亞硝酸基來產生水或一氧化氮分子,而這些反應也藉由 NMR、EPR、UV-vis、X-ray、ESI-MS、IR 和 DFT 理論計算來研究探討佐證。而在氧氣或亞硝酸基活化反應中,兩種反應都不需添加質子的來源或是反應後釋出的氧原子的接受子來推動反應的發生。而在理論計算中,皆發現兩種小分子鍵結在鐵離子上時會與旁邊胜肽鍵上的氫原子產生分子內氫鍵,使其小分子穩定鍵結於鐵離子並提供質子來源。在氧氣的活化反應中,利用in situ NMR 實驗觀察到水分子的生成及有機配位基 (LNHS)2 的氧化過程,也利用三苯基磷的氧化作用及氫負離子轉移反應來驗證推測的反應機構中的中間物 (LNHS)2Fe-μ-1,2-O2-Fe(LNHS)2 (C) 的存在。藉由錯合物 1 來活化氧氣產生水的推導反應機構與生物體內 cytochrome c oxidase 進行氧氣活化的反應機構十分類似。而在亞硝酸基小分子的活化方面,在亞酸基鍵結到鐵離子後,會經由中間物[(LNHS)2Fe-κ1-NO2]- (F) 的結構來生成 [(LNHS)2Fe(NO)2]- 錯合物,而之後在不同的溶劑中又會有 [(LNS)Fe(NO)] 或是 [(LNS)Fe(NO)]2 的錯合物生成。而此亞硝酸基的活化反應與稍早 Fout教授團隊發表的文獻相似,因此認為錯合物 [Na][(LNS)2Fe] (3) 和 [(LNHS)2Fe(NO)2]- 應是同時藉由錯合物 1 還原亞硝酸基後生成的產物。
The protein structure of YtfE was solved by X-ray crystallography, and the detailed coordination environment of the diiron core was characterized and confirmed by EPR and 17O-labeling ESEEM measurements. Each iron in the diiron core was coordinated with one vacancy, two histidines, two bridged carboxylates of glutamates and one oxo-bridging in the distorted octahedron geometry. Two tunnels in YtfE able to transport small molecules such as nitric oxide, water and nitrous oxide were found. The experiments of affinity and reactivity of nitric oxide with reduced and mix-valence YtfE demonstrate that YtfE has moderate affinity for nitric oxide which can be reduced to nitrous oxide in the nitrosylated ([FeIII(NO)-FeIII(NO)]) YtfE state by adding reducing agent. The result suggests that YtfE acts as nitric oxide trapping-scavenger to protect itself and keep the primitive redox state for the repair function.
Oxygen and nitrite molecules can be activated to form water and nitric oxide respectively by complex 1 ((LNHS)2Fe)2, and the reactions were studied by NMR, EPR, UV-vis, X-ray, ESI-MS, IR and DFT calculation. Both reactions do not need to add any extra proton source or the trigger for OAT. The intramolecular hydrogen bond interaction is considered to play an important role in the reactions by the results of DFT calculation. The formation of water and the oxidation of the organic ligand (LNHS)2 can be observed from in situ NMR experiment for oxygen activation, and the important intermediate (LNHS)2Fe-μ-1,2-O2-Fe(LNHS)2 (C) was confirmed by P-oxidation and hydride-transfer experiments. The proposed mechanism for oxygen activation by complex 1 mimics the catalytic mechanism of CcO well. Complex [(LNHS)2Fe(NO)2]- was generated in nitrite activation by complex 1 via an intermediate [(LNHS)2Fe-κ1-NO2]- (F), and [(LNS)Fe(NO)] or [(LNS)Fe(NO)]2 is the degradation product of [(LNHS)2Fe(NO)2]- in DMSO. Both complex 3 [Na][(LNS)2Fe] and [(LNHS)2Fe(NO)2]- are considered as the products in the nitrite reduction similar to the results of the early report by Fout’s group.
1. (a) Beinert, H.; Holm, R. H.; Munck, E., Science 1997, 277 (5326), 653-659; (b) Beinert, H., Eur. J. Biochem. 2000, 267 (18), 5657-5664.
2. (a) Hentze, M. W.; Kühn, L. C., Proc. Natl Acad. Sci. 1996, 93 (16), 8175-8182; (b) Johnson, M. K., Curr. Opin. Chem. Biol. 1998, 2 (2), 173-181; (c) Beinert, H.; Kiley, P. J., Curr. Opin. Chem. Biol. 1999, 3 (2), 152-157; (d) Kiley, P. J.; Beinert, H., Curr. Opin. Microbiol. 2003, 6 (2), 181-185; (e) Johnson, D. C.; Dean, D. R.; Smith, A. D.; Johnson, M. K., Annu. Rev. Biochem 2005, 74 (1), 247-281.
3. Dixon, R.; Eady, R. R.; Espin, G.; Hill, S.; Iaccarino, M.; Kahn, D.; Merrick, M., Nature 1980, 286 (5769), 128-132.
4. Frazzon, J.; Fick, J. R.; Dean, D. R., Biochem. Soc. Trans. 2002, 30 (4), 680-685.
5. (a) Takahashi, Y.; Tokumoto, U., J. Biol. Chem. 2002, 277 (32), 28380-28383; (b) Loiseau, L.; Ollagnier-de-Choudens, S.; Nachin, L.; Fontecave, M.; Barras, F., J. Biol. Chem. 2003, 278 (40), 38352-38359.
6. Py, B.; Barras, F., Nat. Rev. Micro. 2010, 8 (6), 436-446.
7. (a) Cruz‐Ramos, H.; Crack, J.; Wu, G.; Hughes, M. N.; Scott, C.; Thomson, A. J.; Green, J.; Poole, R. K., EMBO J. 2002, 21 (13), 3235-3244; (b) Pullan, S. T.; Gidley, M. D.; Jones, R. A.; Barrett, J.; Stevanin, T. M.; Read, R. C.; Green, J.; Poole, R. K., J. Bacteriol. 2007, 189 (5), 1845-1855; (c) Pullan, S. T.; Monk, C. E.; Lee, L.; Poole, R. K., Methods Enzymol. 2008, 437, 499-519.
8. (a) Kennedy, M. C.; Antholine, W. E.; Beinert, H., J. Biol. Chem. 1997, 272 (33), 20340-20347; (b) Varghese, S.; Tang, Y.; Imlay, J. A., J. Bacteriol. 2003, 185 (1), 221-230; (c) Duan, X.; Yang, J.; Ren, B.; Tan, G.; Ding, H., Biochem. J 2009, 417 (3), 783.
9. (a) Kuo, C. F.; Mashino, T.; Fridovich, I., J. Biol. Chem. 1987, 262 (10), 4724-4727; (b) Keyer, K.; Imlay, J. A., J. Biol. Chem. 1997, 272 (44), 27652-27659; (c) Djaman, O.; Outten, F. W.; Imlay, J. A., J. Biol. Chem. 2004, 279 (43), 44590-44599.
10. (a) Justino, M. C., J. Biol. Chem. 2004, 280 (4), 2636-2643; (b) Justino, M. C.; Almeida, C. C.; Gonçalves, V. L.; Teixeira, M.; Saraiva, L. M., FEMS Microbiol. Lett. 2006, 257 (2), 278-284; (c) Justino, M. C.; Almeida, C. C.; Teixeira, M.; Saraiva, L. M., J. Biol. Chem. 2007, 282 (14), 10352-10359; (d) Justino, M. C.; Li, Y.; Baptista, J. M.; Melo, A. M. P.; Cole, J. A.; Saraiva, L. M., J. Bacteriol. 2008, 190 (6), 2004-2013; (e) Vine, C. E.; Justino, M. C.; Saraiva, L. M.; Cole, J., J. Microbiol. Methods 2010, 81 (1), 77-79.
11. Todorovic, S.; Justino, M. C.; Wellenreuther, G.; Hildebrandt, P.; Murgida, D. H.; Meyer-Klaucke, W.; Saraiva, L. M., J. Biol. Inorg. Chem. 2008, 13 (5), 765-770.
12. Nobre, L. S.; Lousa, D.; Pacheco, I.; Soares, C. M.; Teixeira, M.; Saraiva, L. M., FEBS Lett. 2015, 589 (4), 426-431.
13. Nobre, L. S.; Garcia-Serres, R.; Todorovic, S.; Hildebrandt, P.; Teixeira, M.; Latour, J. M.; Saraiva, L. M., PloS one 2014, 9 (4), e95222.
14. (a) Wikstrom, M. K. F., Nature 1977, 266 (5599), 271-273; (b) Kaila, V. R. I.; Verkhovsky, M. I.; Wikström, M., Chem. Rev. 2010, 110 (12), 7062-7081; (c) Yoshikawa, S.; Muramoto, K.; Shinzawa-Itoh, K., Annu. Rev. Biophys. 2011, 40 (1), 205-223.
15. (a) Tomitake, T.; Hiroshi, A.; Eiki, Y.; Takashi, T.; Hiroshi, Y.; Kyoko, S.-I.; Ryosuke, N.; Reiko, Y.; Shinya, Y., Science 1995, 269 (5227), 1069-1074; (b) Iwata, S.; Ostermeier, C.; Ludwig, B.; Michel, H., Nature 1995, 376 (6542), 660-669.
16. Dodson, E. D.; Zhao, X. J.; Caughey, W. S.; Elliott, C. M., Biochemistry 1996, 35 (2), 444-452.
17. Yoshikawa, S.; Shinzawa-Itoh, K.; Nakashima, R.; Yaono, R.; Yamashita, E.; Inoue, N.; Yao, M.; Fei, M. J.; Libeu, C. P.; Mizushima, T.; Yamaguchi, H.; Tomizaki, T.; Tsukihara, T., Science 1998, 280 (5370), 1723-1729.
18. Yoshikawa, S.; Shimada, A., Chem. Rev. 2015, 115 (4), 1936-1989.
19. Messerschmidt, A.; Bode, W.; Cygler, M., Handbook of Metalloproteins 2004.
20. (a) Mochizuki, M.; Aoyama, H.; Shinzawa-Itoh, K.; Usui, T.; Tsukihara, T.; Yoshikawa, S., J. Biol. Chem. 1999, 274 (47), 33403-33411; (b) Kitagawa, T.; Ogura, T., Prog. Inorg. Chem. 2007, 431-479.
21. (a) Ghiladi, R. A.; Hatwell, K. R.; Karlin, K. D.; Huang, H.-w.; Moënne-Loccoz, P.; Krebs, C.; Huynh, B. H.; Marzilli, L. A.; Cotter, R. J.; Kaderli, S.; Zuberbühler, A. D., J. Am. Chem. Soc. 2001, 123 (25), 6183-6184; (b) Collman, J. P.; Sunderland, C. J.; Boulatov, R., Inorg. Chem. 2002, 41 (8), 2282-2291; (c) Collman, J. P.; Sunderland, C. J.; Berg, K. E.; Vance, M. A.; Solomon, E. I., J. Am. Chem. Soc. 2003, 125 (22), 6648-6649; (d) Chishiro, T.; Shimazaki, Y.; Tani, F.; Tachi, Y.; Naruta, Y.; Karasawa, S.; Hayami, S.; Maeda, Y., Angew. Chem. Int. Ed. Engl. 2003, 42 (24), 2788-91; (e) Kim, E.; Chufán, E. E.; Kamaraj, K.; Karlin, K. D., Chem. Rev. 2004, 104 (2), 1077-1134; (f) Collman, J. P.; Devaraj, N. K.; Decreau, R. A.; Yang, Y.; Yan, Y. L.; Ebina, W.; Eberspacher, T. A.; Chidsey, C. E. D., Science 2007, 315 (5818), 1565-1568; (g) Halime, Z.; Kieber-Emmons, M. T.; Qayyum, M. F.; Mondal, B.; Gandhi, T.; Puiu, S. C.; Chufán, E. E.; Sarjeant, A. A. N.; Hodgson, K. O.; Hedman, B.; Solomon, E. I.; Karlin, K. D., Inorg. Chem. 2010, 49 (8), 3629-3645.
22. (a) MacBeth, C. E.; Golombek, A. P.; Young, V. G.; Yang, C.; Kuczera, K.; Hendrich, M. P.; Borovik, A. S., Science 2000, 289 (5481), 938-941; (b) Mukherjee, A.; Cranswick, M. A.; Chakrabarti, M.; Paine, T. K.; Fujisawa, K.; Münck, E.; Que, L., Inorg. Chem. 2010, 49 (8), 3618-3628; (c) Coggins, M. K.; Toledo, S.; Kovacs, J. A., Inorg. Chem. 2013, 52 (23), 13325-13331; (d) Nishida, Y.; Lee, Y. M.; Nam, W.; Fukuzumi, S., J. Am. Chem. Soc. 2014, 136 (22), 8042-9; (e) Zhou, A.; Kleespies, S. T.; Van Heuvelen, K. M.; Que, L., Chem. Commun. 2015, 51 (76), 14326-14329.
23. Lacy, D. C.; Gupta, R.; Stone, K. L.; Greaves, J.; Ziller, J. W.; Hendrich, M. P.; Borovik, A. S., J. Am. Chem. Soc. 2010, 132 (35), 12188-12190.
24. (a) Szaciłowski, K.; Chmura, A.; Stasicka, Z., Coord. Chem. Rev. 2005, 249 (21-22), 2408-2436; (b) Pacher, P.; Beckman, J. S.; Liaudet, L., Physiol. Rev. 2007, 87 (1), 315-424.
25. Marletta, M. A., Cell 1994, 78 (6), 927-930.
26. Bogdan, C., Trends Cell Biol. 2001, 11 (2), 66-75.
27. Lundberg, J. O.; Weitzberg, E.; Gladwin, M. T., Nat. Rev. Drug Discov. 2008, 7 (2), 156-167.
28. (a) Brooks, J., Proc. R. Soc. Lond. B Biol. Sci. 1937, 123 (832), 368-382; (b) Doyle, M. P.; Pickering, R. A.; DeWeert, T. M.; Hoekstra, J. W.; Pater, D., J. Biol. Chem. 1981, 256 (23), 12393-8; (c) Abraham, Z. H.; Lowe, D. J.; Smith, B. E., Biochem. J 1993, 295 (Pt 2), 587-593.
29. (a) Nagababu, E.; Ramasamy, S.; Abernethy, D. R.; Rifkind, J. M., J. Biol. Chem. 2003, 278 (47), 46349-46356; (b) Yi, J.; Heinecke, J.; Tan, H.; Ford, P. C.; Richter-Addo, G. B., J. Am. Chem. Soc. 2009, 131 (50), 18119-18128; (c) Cosby, K.; Partovi, K. S.; Crawford, J. H.; Patel, R. P.; Reiter, C. D.; Martyr, S.; Yang, B. K.; Waclawiw, M. A.; Zalos, G.; Xu, X.; Huang, K. T.; Shields, H.; Kim-Shapiro, D. B.; Schechter, A. N.; Cannon, R. O., 3rd; Gladwin, M. T., Nat. Med. 2003, 9 (12), 1498-505.
30. (a) Williams, P. A.; Fulop, V.; Garman, E. F.; Saunders, N. F. W.; Ferguson, S. J.; Hajdu, J., Nature 1997, 389 (6649), 406-412; (b) Copeland, D. M.; Soares, A. S.; West, A. H.; Richter-Addo, G. B., J. Inorg. Biochem. 2006, 100 (8), 1413-1425; (c) Yi, J.; Safo, M. K.; Richter-Addo, G. B., Biochemistry 2008, 47 (32), 8247-8249.
31. Zhang, T. T.; Liu, Y. D.; Zhong, R. G., J. Inorg. Biochem. 2015, 150, 126-132.
32. Silaghi-Dumitrescu, R., Inorg. Chem. 2004, 43 (12), 3715-3718.
33. Heinecke, J.; Ford, P. C., Coord. Chem. Rev. 2010, 254 (3–4), 235-247.
34. Tsou, C.-C.; Yang, W.-L.; Liaw, W.-F., J. Am. Chem. Soc. 2013, 135 (50), 18758-18761.
35. Matson, E. M.; Park, Y. J.; Fout, A. R., J. Am. Chem. Soc. 2014, 136 (50), 17398-401.
36. Leung, K. C.-F.; Chak, C.-P.; Lee, S.-F.; Lai, J. M. Y.; Zhu, X.-M.; Wang, Y.-X. J.; Sham, K. W. Y.; Cheng, C. H. K., Chem. Commun. 2013, 49 (6), 549-551.
37. Shi, W.; Punta, M.; Bohon, J.; Sauder, J. M.; D'Mello, R.; Sullivan, M.; Toomey, J.; Abel, D.; Lippi, M.; Passerini, A.; Frasconi, P.; Burley, S. K.; Rost, B.; Chance, M. R., Genome Res. 2011, 21 (6), 898-907.
38. Otwinowski, Z.; Minor, W., Methods Enzymol. 1997, Volume 276, 307-326.
39. (a) Adams, P. D.; Afonine, P. V.; Bunkoczi, G.; Chen, V. B.; Davis, I. W.; Echols, N.; Headd, J. J.; Hung, L.-W.; Kapral, G. J.; Grosse-Kunstleve, R. W.; McCoy, A. J.; Moriarty, N. W.; Oeffner, R.; Read, R. J.; Richardson, D. C.; Richardson, J. S.; Terwilliger, T. C.; Zwart, P. H., Acta Cryst. D 2010, 66 (2), 213-221; (b) Terwilliger, T. C.; Adams, P. D.; Read, R. J.; McCoy, A. J.; Moriarty, N. W.; Grosse-Kunstleve, R. W.; Afonine, P. V.; Zwart, P. H.; Hung, L.-W., Acta Cryst. D 2009, 65 (6), 582-601; (c) Terwilliger, T. C.; Grosse-Kunstleve, R. W.; Afonine, P. V.; Moriarty, N. W.; Zwart, P. H.; Hung, L.-W.; Read, R. J.; Adams, P. D., Acta Cryst. D 2008, 64 (1), 61-69.
40. Emsley, P.; Lohkamp, B.; Scott, W. G.; Cowtan, K., Acta Crystallographica Section D 2010, 66 (4), 486-501.
41. Murshudov, G. N.; Skubak, P.; Lebedev, A. A.; Pannu, N. S.; Steiner, R. A.; Nicholls, R. A.; Winn, M. D.; Long, F.; Vagin, A. A., Acta Cryst. D 2011, 67 (4), 355-367.
42. Winn, M. D.; Ballard, C. C.; Cowtan, K. D.; Dodson, E. J.; Emsley, P.; Evans, P. R.; Keegan, R. M.; Krissinel, E. B.; Leslie, A. G. W.; McCoy, A.; McNicholas, S. J.; Murshudov, G. N.; Pannu, N. S.; Potterton, E. A.; Powell, H. R.; Read, R. J.; Vagin, A.; Wilson, K. S., Acta Cryst. D 2011, 67 (4), 235-242.
43. Painter, J.; Merritt, E. A., J. Appl. Crystallogr. 2006, 39 (1), 109-111.
44. Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E., J. Comput. Chem. 2004, 25 (13), 1605-1612.
45. Laskowski, R. A.; MacArthur, M. W.; Moss, D. S.; Thornton, J. M., J. Appl. Crystallogr. 1993, 26 (2), 283-291.
46. Thomann, H.; Bernardo, M.; Goldfarb, D.; Kroneck, P. M. H.; Ullrich, V., J. Am. Chem. Soc. 1995, 117 (31), 8243-8251.
47. Keefer, L. K.; Nims, R. W.; Davies, K. M.; Wink, D. A., Methods Enzymol. 1996, Volume 268, 281-293.
48. (a) Giuffrè, A.; Stubauer, G.; Sarti, P.; Brunori, M.; Zumft, W. G.; Buse, G.; Soulimane, T., Proc. Natl Acad. Sci. 1999, 96 (26), 14718-14723; (b) Thorndycroft, Faye H.; Butland, G.; Richardson, David J.; Watmough, Nicholas J., Biochem. J 2007, 401 (1), 111-119.
49. (a) Matsumoto, Y.; Tosha, T.; Pisliakov, A. V.; Hino, T.; Sugimoto, H.; Nagano, S.; Sugita, Y.; Shiro, Y., Nat. Struct. Mol. Biol. 2012, 19 (2), 238-245; (b) Zhao, X.; Yeung, N.; Russell, B. S.; Garner, D. K.; Lu, Y., J. Am. Chem. Soc. 2006, 128 (21), 6766-6767; (c) Zumft, W. G.; Frunzke, K., Biochim. Biophys. Acta. 1982, 681 (3), 459-468.
50. (a) Chovancova, E.; Pavelka, A.; Benes, P.; Strnad, O.; Brezovsky, J.; Kozlikova, B.; Gora, A.; Sustr, V.; Klvana, M.; Medek, P.; Biedermannova, L.; Sochor, J.; Damborsky, J., PLoS Comput. Biol. 2012, 8 (10), e1002708; (b) Grabarczyk, D. B.; Ash, P. A.; Vincent, K. A., J. Am. Chem. Soc. 2014, 136 (32), 11236-11239.
51. Sadeghian, A.; Seyedi, S. M.; Sadeghian, H.; Hazrathoseyni, A.; Sadeghian, M., J. Sulfur Chem. 2007, 28 (6), 597-605.
52. Guzman-Jimenez, I. Y.; van Hal, J. W.; Whitmire, K. H., Organometallics 2003, 22 (9), 1914-1922.
53. Harrop, T. C.; Olmstead, M. M.; Mascharak, P. K., Inorg. Chem. 2005, 44 (25), 9527-9533.
54. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Laham, A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A., Gaussian 03, Revision C.02. 2003.
55. (a) Kurtz, D. M.; Boice, E.; Caranto, J. D.; Frederick, R. E.; Masitas, C. A.; Miner, K. D., Encyclopedia of Inorganic and Bioinorganic Chemistry 2011, 1-18; (b) Makris, T. M.; Knoot, C. J.; Wilmot, C. M.; Lipscomb, J. D., Biochemistry 2013, 52 (38), 6662-6671; (c) Thompson, J. W.; Salahudeen, A. A.; Chollangi, S.; Ruiz, J. C.; Brautigam, C. A.; Makris, T. M.; Lipscomb, J. D.; Tomchick, D. R.; Bruick, R. K., J. Biol. Chem. 2012, 287 (10), 7357-7365; (d) Kurtz, D. M., Chem. Rev. 1990, 90 (4), 585-606.
56. Centre, C. C. D., Cambridge Crystallographic Data Centre. 5.36 ed.; CCDB, Ed. Cambridge, 2015.
57. (a) Davydov, M. R.; Smieja, J.; Dikanov, A. S.; Zang, Y.; Que Jr., L.; Bowman, K. M., J. Biol. Inorg. Chem. 1999, 4 (3), 292-301; (b) Davydov, M. R.; Ménage, S.; Fontecave, M.; Gräslund, A.; Ehrenberg, A., J. Biol. Inorg. Chem. 1997, 2 (2), 242-255; (c) Fox, B. G.; Surerus, K. K.; Münck, E.; Lipscomb, J. D., J. Biol. Chem. 1988, 263 (22), 10553-6.
58. Carugo, O.; Čemažar, M.; Zahariev, S.; Hudáky, I.; Gáspári, Z.; Perczel, A.; Pongor, S., Protein Eng. 2003, 16 (9), 637-639.
59. (a) Lu, T.-T.; Chiou, S.-J.; Chen, C.-Y.; Liaw, W.-F., Inorg. Chem. 2006, 45 (21), 8799-8806; (b) Lu, S.; Libby, E.; Saleh, L.; Xing, G.; Bollinger, J. M.; Moënne-Loccoz, P., J. Biol. Inorg. Chem. 2004, 9 (7), 818-827.
60. (a) Caranto, J. D.; Weitz, A.; Hendrich, M. P.; Kurtz, D. M., J. Am. Chem. Soc. 2014, 136 (22), 7981-7992; (b) Haskin, C. J.; Ravi, N.; Lynch, J. B.; Munck, E.; Que, L., Biochemistry 1995, 34 (35), 11090-11098.
61. (a) Berto, T. C.; Speelman, A. L.; Zheng, S.; Lehnert, N., Coord. Chem. Rev. 2013, 257 (1), 244-259; (b) Hayashi, T.; Caranto, J. D.; Matsumura, H.; Kurtz, D. M.; Moënne-Loccoz, P., J. Am. Chem. Soc. 2012, 134 (15), 6878-6884; (c) Speelman, A. L.; Lehnert, N., Acc. Chem. Res. 2014, 47 (4), 1106-1116.
62. Heiss, B.; Frunzke, K.; Zumft, W. G., J. Bacteriol. 1989, 171 (6), 3288-3297.
63. (a) Hayashi, T.; Caranto, J. D.; Wampler, D. A.; Kurtz, D. M.; Moënne-Loccoz, P., Biochemistry 2010, 49 (33), 7040-7049; (b) Lin, Y.-W.; Yeung, N.; Gao, Y.-G.; Miner, K. D.; Lei, L.; Robinson, H.; Lu, Y., J. Am. Chem. Soc. 2010, 132 (29), 9970-9972.
64. (a) Blomberg, L. M.; Blomberg, M. R. A.; Siegbahn, P. E. M., J. Biol. Inorg. Chem. 2007, 12 (1), 79-89; (b) Kurtz, J. D. M., Dalton Trans. 2007, (37), 4115-4121; (c) Solomon, E. I.; Brunold, T. C.; Davis, M. I.; Kemsley, J. N.; Lee, S.-K.; Lehnert, N.; Neese, F.; Skulan, A. J.; Yang, Y.-S.; Zhou, J., Chem. Rev. 2000, 100 (1), 235-350.
65. Liaw, W.-F.; Chen, C.-H.; Lee, G.-H.; Peng, S.-M., Organometallics 1998, 17 (11), 2370-2372.
66. Ghosh, P.; Begum, A.; Bill, E.; Weyhermüller, T.; Wieghardt, K., Inorg. Chem. 2003, 42 (10), 3208-3215.
67. Musie, G.; Lai, C.-H.; Reibenspies, J. H.; Sumner, L. W.; Darensbourg, M. Y., Inorg. Chem. 1998, 37 (16), 4086-4093.
68. Mills, D. K.; Hsiao, Y. M.; Farmer, P. J.; Atnip, E. V.; Reibenspies, J. H.; Darensbourg, M. Y., J. Am. Chem. Soc. 1991, 113 (4), 1421-1423.
69. Hu, W.-J.; Lippard, S. J., J. Am. Chem. Soc. 1974, 96 (8), 2366-2372.
70. Sellmann, D.; Utz, J.; Heinemann, F. W., Inorg. Chem. 1999, 38 (3), 459-466.
71. Sellmann, D.; Peters, Kai P.; Heinemann, Frank W., Eur. J. Inorg. Chem. 2004, 2004 (3), 581-590.
72. Yiannios, C. N.; Karabinos, J. V., J. Org. Chem. 1963, 28 (11), 3246-3248.
73. Kamigata, N.; Hashimoto, S.; Kobayashi, M., Org. Prep. Proced. Int. 1983, 15 (5), 315-319.
74. Menage, S.; Brennan, B. A.; Juarez-Garcia, C.; Munck, E.; Que, L., J. Am. Chem. Soc. 1990, 112 (17), 6423-6425.
75. Nam, W.; Lee, Y.-M.; Fukuzumi, S., Acc. Chem. Res. 2014, 47 (4), 1146-1154.
76. Shih, W.-C.; Lu, T.-T.; Yang, L.-B.; Tsai, F.-T.; Chiang, M.-H.; Lee, J.-F.; Chiang, Y.-W.; Liaw, W.-F., J. Inorg. Biochem. 2012, 113, 83-93.