簡易檢索 / 詳目顯示

研究生: 翁尉書
Wei-Shu Wong
論文名稱: Design and Implementation of a Boosted Cascade Based Face Detection System
以漸近式階層為基礎之人臉偵測系統的設計與實現
指導教授: 邱瀞德
Ching-Te Chiu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 41
中文關鍵詞: 人臉偵測電腦視覺機器學習
外文關鍵詞: face detection, computer vision, machine learning, AdaBoost, CMOS
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Face detection is widely used in many automated systems, as the preceding step of vision-based applications, such as face recognition, face tracking, and human computer interface. Numerous techniques have been proposed to detect the appearances of faces in a single image, including software and hardware design.
    In this thesis, we present a face detection architecture based on a boosted cascade algorithm. We propose the two-field and reduced two-field feature extraction scheme for integral image calculation. Based on the reduced two-field extraction scheme, the required memory size is reduced from 400kbit to 1.8kbit. In addition, we use the parallel processing in classifier evaluations to enhance the processing speed by three times. This design achieves the detection accuracy as other systems with high speed and low memory cost. Under the UMC 90 nm technology, this system can run at 200MHz with the area of 0.279 mm2, and process 160╳120 gray scale images at the speed of 500 fps.


    在許多自動化系統之中,人臉偵測的技術都被做為各種視覺應用的前置作業,而被廣泛地使用,例如人臉辨識,人臉追縱以及人機介面等等。在單一影像中偵測人臉的各種方式被相繼提出,包括了軟體及硬體的方式。
    在這篇論文中,我們以漸近式階層演算法為基礎,提出了人臉偵測的硬體架構。我們採用了雙域特徵截取,進行累積圖的計算。藉由簡化後的雙域特微截取,累積圖所需的記憶體,可以由原本的400kbit縮減至1.8kbit。除此之外,我們在進行分類檢測時採用平行運算,將計算速度提升為原本的三倍。這個設計可以達到和其它系統相同的偵測正確率,同時具有高速度和低記憶體的優點。使用UMC 90 nm的製程,這個系統的面積為0.279平方公釐,能以200MHz的時脈運作,並且以500fps的速度處理160╳120的灰階影像。

    Abstract (Chinese)…………………………………………………….ii Abstract…………………………………………………………………iii Chapter 1 Introduction………………………………………………..1 Chapter 2 Face Detection Framework……………………………….5 2.1 Overview………………………………………………………..5 2.2 Feature Selection……………………………………………….6 2.2.1  Integral Image…………………………………………..8 2.3 Learning a Classification System…………………………….10 2.3.1  AdaBoost Algorithm……………………………… …..11 2.3.2  Learning Results……………………………………….13 2.4 Cascade of Classifiers………………………………………...15 2.4.1  Training a Cascade…………………………………….16 2.4.2  Training Results………………………………………..17 Chapter 3 Reduced Two-Field Feature Extraction and Hardware Architecture…………………………………………………..……20 3.1 Overview………………………………………………………20 3.2 Memory………………………………………………………..21 3.2.1  Frame Buffer…………………………………………...21 3.2.2  Reduced Two-Field Feature Extraction………………21 3.2.3  Weak Classifiers……………………………………….26 3.3 Parallel Processing……………………………………………27 3.4 Overall Architecture………………………………………….29 Chapter 4 Implementation and Simulation Results………………..32 4.1 Simulation results……………………………………………..32 4.2 Synthesis result………………………………………………..33 4.3 Comparison and Discussion………………………………….34 Chapter 5 Conclusion………………………………………………..37 References……………………………………………………………...38

    [1] Yoav Freund and Robert E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” Computational Learning Theory: Eurocolt ’95, pages 23–37. Springer-Verlag, 1995.
    [2] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” IEEE Conference on Computer Vision and Pattern Recognition, Kauai, HI, December 2001.
    [3] C. Papageorgiou, M. Oren, and T. Poggio, “A general framework for object detection,” International Conference on Computer Vision, 1998.
    [4] Ming-Hsuan Tang, David J. Kriegman, and Narendra Ahuja, “Detection Faces in Images: A Survey,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 1, Jan 2002.
    [5] G. Yang and T. S. Huang, “Human Face Detection in Complex Background,” Pattern Recognition, vol. 27, no. 1, pp. 53-63, 1994.
    [6] C. Kotropoulos and I. Pitas, “Rule-Based Face Detection in Frontal Views,” Proc. Int’l Conf. Acoustics, Speech and Signal Processing, vol. 4, pp. 2537-2540, 1997.
    [7] S.A. Sirohey, “Human Face Segmentation and Identification,” Technical Report CS-TR-3176, Univ. of Maryland, 1993.
    [8] K.C. Yow and R. Cipolla, “Feature-Based Human Face Detection,” Image and Vision Computing, vol. 15, no. 9, pp. 713-735, 1997.
    [9] S. McKenna, Y. Raja, and S. Gong, “Tracking Colour Objects Using Adaptive Mixture Models,” Image and Vision Computing, vol. 17, nos. 3/4, pp. 223-229, 1998.
    [10] T. Sakai, M. Nagao, and S. Fujibayashi, “Line Extraction and Pattern Detection in a Photograph,” Pattern Recognition, vol. 1, pp. 233-248, 1969.
    [11] B. Scassellati, “Eye Finding via Face Detection for a Foevated, Active Vision System,” Proc. 15th Nat’l Conf. Artificial Intelligence, 1998.
    [12] S.C. Yan, J.Z. Liu, X. Tang, and T.S. Huang, “Formulating Face Verification With Semidefinite Programming,” IEEE Trans. on Image Processing, vol. 16, no. 11, pp. 2802-2810, Nov. 2007.
    [13] M. Kirby and L. Sirovich, “Application of the Karhunen-Loe`ve Procedure for the Characterization of Human Faces,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 12, no. 1, pp. 103-108, Jan. 1990.
    [14] K.-K. Sung and T. Poggio, “Example-Based Learning for View-Based Human Face Detection,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20, no. 1, pp. 39-51, Jan. 1998.
    [15] B. Moghaddam and A. Pentland, “Probabilistic Visual Learning for Object Recognition,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 696-710, July 1997.
    [16] M.-H. Yang, N. Ahuja, and D. Kriegman, “Mixtures of Linear Subspaces for Face Detection,” Proc. Fourth Int’l Conf. Automatic Face and Gesture Recognition, pp. 70-76, 2000.
    [17] H. Schneiderman and T. Kanade, “Probabilistic Modeling of Local Appearance and Spatial Relationships for Object Recognition,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 45-51, 1998.
    [18] H. Rowley, S. Baluja, and T. Kanade, “Neural Network-Based Face Detection,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20, no. 1, pp. 23-38, Jan. 1998.
    [19] R. McCready, “Real-Time Face Detection on a Configurable Hardware System”, International Symposium on Field Programmable Gate Arrays, Monterey, California, United States, 2000.
    [20] B. Srijanto, “Implementing a Neural Network based face detection onto a reconfigurable computing system using Champion”, MS Thesis, University of Tennessee, Knoxville, August 2002.
    [21] T. Theocharides, G. Link, N. Vijaykrishnan, M.J. Irwin, and W. Wolf, “Embedded hardware face detection”, Proc. IEEE Int. Conf. VLSI Design, pp. 133-138, 2004.
    [22] Y. Hori, Y. Hanai and T. Kuroda, “A 0.79-mm^2 29-mW Real-Time Face Detection IP Core,” IP Based Electronic System Conference & Exhibiton, Dec. 2007.
    [23] K. Khattab, J. Miteran, J. Dubois, and J. Matas. “Embedded System Study for Real Time Boosting Based Face Detection,” IEEE Industrial Electronics, pp. 3461-3465, Nov. 2006.
    [24] K. Imagawa, K. Iwasa, T. Kataoka, T. Nishi, and H. Matsuo, “Real-time face detection with MPEG4 codec LSI for a mobile multimedia terminal,” Proc. IEEE Int. Conf. Consumer Electronics, pp. 16–17 , Jun. 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE