研究生: |
簡才智 |
---|---|
論文名稱: |
溫度濕度效應對多壁奈米碳管/酚醛樹脂複合材料機械及電性質影響之研究 Mechanical and Electrical Properties of MWNT/Phenolic Composites Under Moisture-Temperature Effects |
指導教授: |
葉銘泉 博士
Dr. Ming-Chuen Yip |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 奈米碳管 、複合材料 、熱循環 、靜態 、疲勞性質 |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著時代潮流,研究奈米碳管發展是現今在學術界熱門討論話題,由於奈米碳管具有質量輕、導電性、高熱傳導度及熱穩定性等特殊物理特性以及許多潛在的應用如航空、航太、電磁波遮蔽(EMI)材料及靜電釋放材料(ESD)等上。本文即以研究奈米碳管添加入酚醛樹脂的複合材料(CNT/phenolic),探討不同比例的纖維對複合材料之抗拉強度及電性質,並觀察材料遭受到不同環境及熱循環溫度下處理後材料的抵抗能力,另外以碳纖維/環氧樹脂(Gr/epoxy)疊層板做為奈米碳管/酚醛樹脂的補強材,由靜態和疲勞實驗觀察補強效果。實驗結果顯示抗拉強度隨著碳管重量百分比增加而增加,在熱循環溫度地方由於基材和纖維間的膨脹係數不匹配導致強度隨週次數增加而降低,以碳纖維/環氧樹脂補強奈米碳管/酚醛樹脂在靜態強度提升5倍。最後經由SEM圖顯示,純酚醛破壞面屬於平滑脆斷,在碳管/酚醛時破壞面呈現龜裂凹凸不平,而放大圖中可看到碳管有壓印和脫出等破壞情況存在碳管和基材間。
參考文獻
1. http://www.asiateck.com.tw/index.htm亞特必股份有限公司。
2. H. S. Katz and J. V. Milewski., “Handbook of fillers for plastics,” New York:/Van Nostrand Reninhold Co., (1987).
3. W. Tang, M. H. Santare and S. G. Advani, “Melt processing and mechanical property characterization of multi-walled carbon nanotube/ high density polyethylene (MWNT/HDPE) composite films,” Carbon 41 (2003) 2779–2785.
4. A. Allaoui, S. Bai, H. M. Cheng and J. B. Bai, “Mechanical and electrical properties of a MWNT/epoxy composite,” Composites Science and Technology 62 (2002) 1993–1998.
5. M. Cadek, B. L. Foulgo, J. N. Coleman, V. Barron, J. Sandler, M.S. P. Shaffer, A. Fonseca, M. V. Es, K. Schulte and W. J. Blau, “Structural and Electronic Properties of Molecular Nanostructures,” AIP Conference Proceedings 633 (2002) 562-565.
6. D. S. Lim, J. W. An and H. J. Lee, “Effect of carbon nanotube addition on the tribological behavior of carbon/carbon composites,” Wear 252 (2002) 512–517.
7. N. P. Valentin, “Carbon nanotubes: properties and application,” Materials Science and Engineering R 43 (2004) 61–102.
8. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl and R. E. Smalley, Nature (1985), 318,162.
9. http://nano.nchc.org.tw/dictionary/c60.html 奈米科學網
10. S. Iijima, “Helical microtubules of graphitic carbon,” Nature (1991), p.354-356.
11. T. W. Odom, J. L. Huang, P. Kim and C.M. Lieber, “Structure and Electronic Properties of Carbon Nanotubes,” J. Phys. Chem. (2000), 2794-2809.
12. A. Hirsch, “Chemistry of Single-wall Carbon Nanotubes,” Angew. Chem. Int. Ed. 41 (2002), S. 1853.
13. E. Dujardin, T. W. Ebbesen, A. Krishnan, P. N. Yianilos and M. M. J. Treacy, Phys. Rev. B (1998), 58, 14013.
14. M. M. J. Treacy , T. W. Ebbesen and T. M. Gibson, “Exceptionally High young’s modulus observed for individual carbon nanotubes,” Nature (1996), 381, 678–680.
15. E. W. Wong, P. E. Sheehan and C. M. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes,” Science 1997, 277(5334), 1971–5.
16. D. A. Walters, L. M. Ericson, M. J. Casavant, J. Liu, D. T. Colbert and K. A Smith, “Elastic strain of freely suspended single-wall carbon nanotube ropes,” Applied Physics Letters (1999), 74(25), 3803–3805.
17. S. Iijima and T. Ichlhashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature (1993), 363, 603–605.
18. D. S. Bethune, C. H. Kiang, M. S. Devries, G. Gorman, R. Savoy and J. Vazquez, “Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls,” Nature (1993), 363, 605–607.
19. C. Journet , W. K. Maser, P. Bernier, A. Loiseau, M. L. Chapelle and S. Lefrant, “Large-scale production of single-walled carbon nanotubes by the electric-arc technique,” Nature (1997), 388, 756–758.
20. A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev , C. B. Human and F. J. R. Macias, “Large-scale purication of single-wall carbon nanotubes: Process, product and characterization,” Applied Physics A (1998), 67(1), 29–37.
21. P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Fohmund, D. T. Colbert and K. A. Smith, “Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide,” Chemical Physics Letters (1999), 313(1-2), 91–97.
22. Z. F. Ren, Z. P. Huang, J. W Xu., D. Z. Wang, J. G. Wen and J. H. Wang, “Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot,” Applied Physics Letters (1999), 75(8), 1086–1088.
23. Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush and M. P. Siegal, “Synthesis of large arrays of well-aligned carbon nanotubes on glass,” Science (1998), 282, 1105–1107.
24. M. Cochet, W. K. Maser, A. M. Benito, M. A. Callejas, M. T. Martinez and J. M. Benoit, “Synthesis of a new polyaniline/nanotube composite: “in-situ” polymerization and charge transfer through siteselective interaction,” Chem. Comm. (2001), 16, 1450–1451.
25. S. Kumar, H. Doshi, M. Srinivasarao, J. O. Park and D. A. Schiraldi, “Fibers from polypropylene/nano carbon fiber composites,” Polymer (2002), 43, 1701–1703.
26. D. Qian, E. C. Dickey, R. Andrews and T. Rantell, “Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites,” Applied Physics Letters (2000), 76(20), 2868–2870.
27. A. Peigney, E. Flahaut, C. H. Laurent, F. Chastel and A. Rousset, “Aligned carbon nanotubes in ceramic-matrix nanocomposites prepared by high-temperature extrusion,” Chemical Physics Letters (2002), 352, 20–25.
28. H. D. Wagner, O. Lourie, Y. Feldman and R. Tenne, “Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix,” Applied Physics Letters (1998), 72(2), 188–190.
29. O. Lourie and H. D. Wagner, “Evidence of stress transfer and formation of fracture clusters in carbon nanotube-based composites,” Composites Science and Technology (1999), 59(6), 975–977.
30. S.L. Ruan, P. Gao, X.G. Yang, T.X. Yu, “Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes,” Polymer (2003);44(19):5643–54.
31. J. M. Park, D. S. Kim, J. R. Lee and T. W. Kim, “Nondestructive damage sensitivity and reinforcing effect of carbon nanotube/epoxy composites using electro-micromechanical technique,” Materials Science and Engineering C 23 (2003) 971–975.
32. J. M. Park, J. W. Kim and D. J. Yoon, J. Colloid Interface Science 247 (2002) 231.
33. R. Andrews, M.C. Weisenberger, “Carbon nanotube polymer composites,” Current Opinion in Solid State and Materials Science 8 (2004) 31–37.
34. K-T. Lau, D. Hui, “The revolutionary creation of new advanced materials–carbon nanotube composites,” Composites Part B (2002);33:263–77.
35. Y. Ren, F. Li, H-M Cheng, K. Liao, “Tension–tension fatigue behavior of unidirectional single-walled carbon nanotube reinforced-epoxy composite,” Carbon (2003);41:2159–79.
36. J. K. Gillham, Polymer Enq. Sci., 7, 225 (1967).
37. W. Wrasidlo, J. Polymer Sci., A2, 9, 1603 (1971).
38. H. O. Fuch and R. I. Stephens, “Metal Fatigue in Engineering,” John Willy and Sons, New York, (1980).
39. D. S. Saunders and G. Clark, “Fatigue Damage in Composite Laminates,” Materials Forum, Vol.17, (1993), pp.309-331.
40. R. D. Jamison, K. Schulte, K. L. Reifsnider and W. W. Stinchcomb, “Characterization and Analysis of Damage Mechanisms in Tension-Tension Fatigue of Graphite/Epoxy Laminates,” Effects of Defects in Composite Materials, ASTM STP 836, American Society for Testing and Materials, (1984), pp.21-55.
41. K. L. Reifsnider, E. G. Henneke, W. W. Stinchcomb and J. C. Duke, “Damage Mechanics and NDE of Composite Laminates,” Mechanics of Composite Materials, Recent Advance, Z. Hashin and C. T. Herakovich, eds., Pergamon Press, New York, (1983), pp.399-420.
42. W. Hwnag and K. S. Han, “Fatigue of Composites Fatigue Modulus Concept and Life Prediction,” Journal of Composite Materials, Vol. 20, (1986), pp.154-165.
43. R. J. W. Donald and M. Michel, “Electromagnetic Shielding,” A handbook series on electromagnetic interference and compatibility, Vol. 3, chapter 2, 6 and 7, (1988).
44. R. P. Clayton, “Introduction to Electromagnetic Compatibility,” Wiley series in Microwave and Optical Engineering, pp632-648,(1992).
45. K. C. David, “Field and Wave Electromagnetic,” Reading , Mass.Addison Wesley, pp198-219, (1989).
46. “Test Methods for dc resistance or conductance of insulating materials,” ASTM D257 (1999).
47. ASTM Standard, ASTM designation: D570-98, “Standard Test Method for Water Absorption of Plastics,” (1998).
48. “Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials,” ASTM D3039-95a, (1998), pp.99-109.
49. “Standard Test Method for Tension-Tension Fatigue of Polymer Matrix Composites,” ASTM D3479-96, (1998), pp133-138.
50. M. R. VanLandingham, R. F. Eduljee and J. W. Gillespie, “Moisture Diffusion in Epoxy System,” Center for Composite Materials and Materials Science Program.
51. L. Nicholais and A. T. DiBenedetto, J. Appl. Polymer Sci., 15, 1585 (1971).
52. A. N. Gent, J. Polymer Sci., A2, 10, 571 (1972).
53. Y. Fukui, T. Sato, M. Ushirokawa, T. Asada, and S. Onogi, J. Polymer Sci., A2, 8, 1195 (1970).
54. J. K. Gillham, Polymer Enq. Sci., 7, 225 (1967).
55. W. J. Wrasidlo, Polymer Sci., A2, 9, 1603 (1971).
56. A. S. Kenyon and L. E. Nielsen, J. Macromol. Sci., A3, 275 (1969).
57. R. E. Cuthrell, J. Appl. Polymer Sci., 11, 949 (1967).
58. F.H. Gojny, M.H.G. Wichmann, U. K□opke, B. Fiedler, K. Schulte, “Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content,” Composites Science and Technology 64 (2004) 2363–2371.
59. Y. Breton, G. Desarmot, J.P. Salvetat, S. Delpeux, C. Sinturel, F. Beguin, “Mechanical properties of multiwall carbon nanotubes/epoxy composites: in.uence of network morphology,” Carbon 42 (2004) 1027–1030.
60. N-H Tai, M-K Yeh, J-H Liu, “Enhancement of the mechanical properties of carbon nanotube/phenolic composites using a carbon nanotube network as the reinforcement,” Letters to the Editor / Carbon 42 (2004) 2735–2777.
61. W. D. Bascom and J. B. Romans, Ind. Eng. Chem. (Prod. Res. Devel.), 7, 172 (1968).
62. 胡德, 國立編譯館主編, “高分子物理與機械性質(下),” 渤海堂文化公司印行, 國立清華大學, (1990)。
63. J. Cook and J. E. Gordon, Proc. Royal Soc., A282, 508 (1964).
64. 村上新一, 洪純仁 譯, “酚醛樹脂,” 復文出版社, 台灣台北,
(1981)。
65. P. H. Geil, “Polymer Single Crystals,” Interscience, New York, 1963.
66. K-T Lau, S-Q Shi, H-M Cheng, “Micro-mechanical properties and morphological observation on fracture surfaces of carbon nanotube composites pre-treated at different temperatures,” Composites Science and Technology 63 (2003) 1161–1164.
67. A. S. Kenyon and L. E. Nielsen, J. Macromol. Sci., A3, 275 (1969).
68. Y. Diamant, S. Welner, and D. Katz, Polymer, 11, 498 (1970).
69. 劉家豪, “碩士論文 多壁奈米碳管/酚醛樹脂複合材料之機械性質研究,” 國立清華大學, (2003)。
70.R. B. Pipes, P. Hubert, “Helical carbon nanotube arrays: thermal expansion,” Composites Science and Technology 63 (2003) 1571–1579.
71. R.S. Ruo, D.C. Lorent, “Mechanical and thermal-properties of carbon nanotube,” Carbon 1995;33(7):925-30.
72. 勞工安全衛生簡訊第 70 期-複合材料之應用簡介 勞工安全組 沈育霖副研究員。
73. M. Olaf, K. Dirk, W. Hans, F. Christian, V. Marc, W.Holger, “Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene,” Polymer 45 (2004) 739–748.