研究生: |
魏百駿 Wei, Pai-Chun |
---|---|
論文名稱: |
磊晶成長氮化銦之光學、電學、熱學性質 Molecular beam epitaxy grown Indium nitride thin film and nanomaterials: Optical, electrical and thermal properties |
指導教授: |
施漢章
Shih, Han-Chang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 79 |
中文關鍵詞: | 氮化銦 、奈米管柱 、光譜 、反光導 、熱擴散 |
外文關鍵詞: | indium nitride, nanotube, photoluminescence, negative photoconductivity, thermal diffusivity |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究成功地利用分子束磊晶系統成長氮化銦薄膜與奈米結構,並究其光學、電學、及熱學特性。首先我們使用變溫螢光光譜來分析氮化銦光學中爭議性極高的螢光能隙。我們發現螢光能量低於 0.730 eV的樣品,隨著溫度上升會產生正常的紅移現象,然而螢光能量高於0.730 eV的樣品則會產生異常的藍移。研究發現晶格膨脹造成的光譜紅移與電子電洞費米能階分離造成的光譜藍移,能有效解釋不同載子濃度的氮化銦在光學上異常位移的原因。在電特性分析部份,我們報導氮化銦薄膜中首次發現的反光導行為。不同於傳統半導體(在光線的照明下導電度會上升),氮化銦薄膜在光線照明下導電度呈現下降。我們根據導帶上電子散射行為以及載子在不同能階中遷移來建立模型並解釋此現象。最後,我們系統性地研究不同成長溫度及不同基板上氮化銦薄膜的熱擴散係數,並研究其熱擴散數值與薄膜厚度或成長條件的關係。我們在氮化鎵上成長1.7微米厚的氮化銦能得到0.55 cm2/s高熱擴散數值的結果顯示出,較低的結構缺陷能減少傳輸聲子的散射並增加熱擴散能力。
In this thesis, we present successful growth and characterization (optical, electrical, and thermal) of InN epitaxial films and nanostructures by molecular beam epitaxy. Temperature-dependent photoluminescence (PL) spectroscopy is used as a tool to study the much controversial optical band gap in degenerate InN. Samples with PL peak on the lower and higher energy side of 0.730 eV demonstrate a normal redshift and anomalous blueshift, respectively, with increasing temperature. This can be explained effectively on the basis of a competition between a conventional red shift from lattice dilation and a blue shift of the electron and hole quasi Fermi-level separation. On the electrical characterization part, we report the first observation of negative photoconductivity behavior in InN thin films. Unlike most conventional (non-degenerate) semiconductors, that show increase in conductivity with illumination, InN shows a regular decrease. The results have been qualitatively modeled on the basis of electronic scattering in the conduction band and transitions in degenerate InN with recombination centers. Finally, a systematic thermal diffusivity (related to thermal conductivity) study in the MBE-grown InN thin films on various substrates with different growth temperatures were carried out. A high thermal diffusivity value of 0.55 cm2/s for a combined 1.7 um thick InN film suggests a lower degree of phonon scattering in our sample with fewer structural defects.
[1] S. Nakamura, S. Pearton, and G. Fasol, “The Blue Laser Diode: The Complete Story (Berlin: Springer)” (2000).
[2] H. J. Hovel and J. J. Cuomo, Appl. Phys. Lett. 20, 71 (1972).
[3] T. L. Tansley and C. P. Foley, “Semi-Insulating III-V Compounds (London: Shiva)” pp. 497 (1984).
[4] K. S. A. Butcher, M. Winterhert-Fouquet, P. P. T. Chen, T. L. Tansley, and S. Srikeaw, Mater. Res. Symp. Proc. 693, I6.9 (2001).
[5] K. I. Westra, R. P. W. Lawson, and M. J. Brett, J. Vac. Sci. Technol. A 8, 1730 (1988).
[6] H. Lu, W. J. Schaff, J. Hwang, H.Wu, W. Yeo, A. Pharkya, and L. F. Eastman, Appl. Phys. Lett. 77, 2548 (2000).
[7] V. Y. Davydov, A. A. Klochikhin, R. P. Seisiyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, J. Grual, Phys. Status Solidi B 229, R1 (2002).
[8] K. Sugita, H. Takatsuka, A. Hashimoto, and A. Yamamoto, Phys. Status Solidi b 240, 421(2003).
[9] C. H. Swartz, R. P. Tomkins, T. H. Myers, H. Lu, and W. J. Schaff, Phys. Status Solidi c 2, 2250 (2005).
[10] W. Walukiewicz, J. W. Ager III, K. M. Yu, Z. Liliental-Weber, J. Wu, S. X. Li, R. E. Jones, and J. D. Denlinger, J. Phys. D: Appl. Phys. 39, R83 (2006).
[11] M. Losurdo, G. Bruno, T. H. Kim, S. Choi, and A. Brown, Appl. Phys. Lett. 88, 121928 (2006).
[12] T. L. Tansley and C. P. Foley, in Proceedings of the 3rd International Conference on Semi-Insulating III-V Materials, Warm Springs, Oregon, pp. 497 (1984).
[13] A. Janotti and C. G. Van de Walle, Appl. Phys. Lett. 92, 032104 (2008).
[14] T. L. Tansley and C. P. Foley, J. Appl. Phys. 59, 3241 (1986).
[15] T. Matsuoka, H. Tanaka, and A. Katsui, Int. Symp. on GaAs and Related Compounds (Karuizawa, 1989) (Ins. Phys. Conf. Series vol 106) pp. 141 (1990).
[16] S. Yamaguchi, M. Kariya, S. Nitta, T. Takeuchi, C. Wetzel, H. Amano and I. Akasaki, Appl. Phys. Lett. 76, 876 (2000).
[17] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002).
[18] Y. Nanishi, Y. Saito, and T. Yamaguchi, Japan J. Appl. Phys. 42, 2549 (2003).
[19] S. C. Shi, C. F. Chen, S. Chattopadhyay, Z. H. Lan, K. H. Chen, and L. C. Chen, Adv. Func. Mater. 15, 781 (2005).
[20] M. S. Hu, W. M. Wang, T. T. Chen, L. S. Hong, C. W. Chen, C. C. Chen, Y. F. Chen, K. H. Chen, and L. C. Chen, Adv. Func. Mater. 16, 537 (2006).
[21] S. P. Fu, C. J. Yu, T. T. Chen, G. M. Hsu, M. J. Chen, L. C. Chen, K. H. Chen, and Y. F. Chen, Adv. Mater. 19, 4524 (2007).
[22] R. S. Chen, S. W. Wang, Z. H. Lan, J. T. H. Tsai, C. T. Wu, L. C. Chen, K. H. Chen, Y. S. Huang, and C. C. Chen, Small 4, 925 (2008).
[23] J. Chen, G. Cheng, E. Stern, M. A. Reed, and P. Avouris, Nano Lett. 7, 2276 (2007).
[24] Y. Li, J. Xiang, F. Qian, S. Gradecak, Y. Wu, H. Yan, H. Yan, D. A. Blom, C. M. Lieber, Nano Lett. 7, 1468 (2006).
[25] 葉俊樑, “Growth and Characterization of Indium Nitride Thin Films Prepared by Chemical Beam Epitaxy”, 國立台灣科技大學材料科技研究所碩士論文,民國94年,六月。
[26] 陳志泰, “Epitaxial InN film using Hydrazoic acid: in-situ study of growth and ex-situ optical characterization”,大同大學光電工程研究所碩士論文, 民國95年,七月。
[27] 林芳陞, “Growth and Characterization of InN grown on ITO/Glass and C-plane Sapphire Substrates by Chemical Beam Epitaxy using Hydrozoic Acid (HN3) as Nitrogen Source”, 國立台灣科技大學材料科技研究所碩士論文,民國96年,七月。
[28] B. Schwenzer, L. Loeffler, R. Seshadri, S. Keller, F. F. Lange, S. P. DenBaars, and U. K. Mishra, J. Mater. Chem. 14, 637 (2004).
[29] L. W. Yin, Y. Bando, D. Golberg, and M. S. Li, Adv. Mater. 16, 1834 (2004).
[30] S. Luo, W. Y. Zhou, W. X. Wang, Z. X. Zhang, L. F. Liu, X. Y. Dou, J. X. Wang, X. W. Zhao, D. F. Liu, Y. Gao, L. Song, Y. J. Xiang, J. J. Zhou, and S. S. Xie, Appl. Phys. Lett. 87, 063109 (2005).
[31] M. M. Seikh, and C. N. R. Rao, Small 1, 91 (2005).
[32] H. Y. Xu, Z. Liu, X. T. Zhang, and S. K. Hark, Appl. Phys. Lett. 90, 113105 (2007).
[33] Y. Li, J. Wang, Z. Deng, Y. Wu, X. Sun, D. Yu, and P. Yang, J. Am. Chem. Soc. 123, 9904 (2001).
[34] J. W. Wang and Y. D. Li, Adv. Mater. 15, 445 (2003).
[35] J. Goldberger, R. R. He, Y. F. Zhang, S. W. Lee, H. Q. Yan, H. J. Choi, and P. D. Yang, Nature, 422, 599 (2003).
[36] J. Q. Hu, Y. Bando, Z. W. Liu, F. F. Xu, T. Sekiguchi, and J. H. Zhan, Angew. Chem. Int. Ed. 43,63 (2004).
[37] Linus E. Jensen, Mikael T. Bjrk, Sren Jeppesen, Ann I. Persson, B. Jonas Ohlsson, and Lars Samuelson, Nano Letters, 4, 1961 (2004).
[38] X. Wang, S. Che, Y. Ishitani, and A. Yoshikawa, Appl. Phys. Lett. 89, 171907 (2006).
[39] G. Koblmuller, C. S. Gallinat, S. Bernardis, J. S. Speck, G. D. Chern, E. D. Readinger, H. Shen, and M. Wraback, Appl. Phys. Lett. 89, 071902 (2006).
[40] S. P. Fu, T. T. Chen, and Y. F. Chen, Semicond. Sci. Technol. 21, 244 (2006).
[41] I. Mahboob, T. D. Veal, C. F. McConville, H. Lu, and W. J. Schaff, Phys. Rev. Lett. 92, 036804 (2004).
[42] T. Schmidt, K. Lischka, and W. Zulehner, Phys. Rev. B 45, 8989 (1992).
[43] J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, J. Appl. Phys. 94, 4457 (2003).
[44] D. C. Look, H. Lu, W. J. Schaff, J. Jasinski, and Z. Liliental-Weber, Appl. Phys. Lett. 80, 258 (2002).
[45] C. Stampfl, C. G. Van de Walle, D. Vogel, P. Krüger, and J. Pollmann, Phys. Rev. B 61, R7846 (2000).
[46] S. Z. Wang, S. F. Yoon, Y. X. Xia, and S. W. Xie, J. Appl. Phys. 95, 7998-8001(2004).
[47] T. Stoica, R. J. Meijers, R. Calarco, T. Richter, E. Sutter, and H. Luth, Nano Lett. 6, 1541-1547 (2006).
[48] C. H. Shen, H. Y. Chen, H. W. Lin, S. Gwo, A. A. Klochikhin, and V. Y. Davydov, Appl. Phys. Lett. 88, 253104 (2006).
[49] C. L. Hsiao, H. C. Hsu, L. C. Chen, C. T. Wu, C. W. Chen, M. Chen, L. W. Tu, and K. H. Chen, Appl. Phys. Lett. 91, 181912 (2007).
[50] I. Mora-Seró, F. Fabregat-Santiago, B. Denier, J. Bisquert, R. Tena-Zaera, J. Elias, C. Lévy-Clément, “Determination of carrier density of ZnO nanowires by electrochemical techniques,” Appl. Phys. Lett. 89, 203117 (2006).
[51] B. Monemar, P. P. Paskov, A. Kasic, Superlattices and Microstructures 38, 38 (2005).
[52] B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, Phys. Rev. B 69, 115216 (2004).
[53] J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, and W. J. Schaff, Phys. Rev. B 66, 201403 (2002).
[54] B. Arnaudov, T. Paskova, E. M. Goldis, S. Evtimova, and B. Monemar, Phys. Rev. B 64, 045213 (2001).
[55] J. De-Sheng, Y. Makita, K. Ploog, and H. Queisser, J. Appl. Phys. 53, 999 (1982).
[56] E. O. Kane, J. Phys. Chem. Solids 1, 249 (1957).
[57] J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, H. Lu, W. J. Schaff, A. Barcz, and R Jakiela, Appl. Phys. Lett. 84, 2805 (2004).
[58] B. Gil, O. Briot, and R. L. Aulombard, Phys. Rev. B 52, R17028 (1995).
[59] S. H. Wei and A. Zunger, Appl. Phys. Lett. 69, 2719 (1996).
[60] M. Higashiwaki and T. Matsui, J. Crys. Growth 269, 162 (2004).
[61] K. F. Berggren and B. E. Sernelius, Phys. Rev. B 24, 1971 (1981).
[62] A. Raymond, J. L. Roberts, and C. Bernard, J. Phys. C 12, 2289 (1979).
[63] E. Bellotti, B. K. Doshi, K. F. Brennan, J. D. Albrecht, and P. P. Ruden, J. Appl. Phys. 85, 916 (1999).
[64] Tyagai et al., Fiz. Tekh. Poluprovodn. 11, 1242 (1977). [Sov. Phys. Semicond. 11, 1257 (1977).]
[65] T. Inushima, T. Shiraishi, and V. Yu Davydov, Solid State Commun. 110, 491 (1999).
[66] P. Perlin, E. Litwin-Staszewska, B. Suchanek, W. Knap, J. Camassel, T. Suski, R. Piotrzkowski, I. Grzegory, S. Porowski, E. Kaminska, and J. C. Chervin, Appl. Phys. Lett. 68, 1114 (1996).
[67] H. A. Washburn, J. R. Sites, and H. H. Wieder, J. Appl. Phys. 50, 4872 (1997).
[68] A. Kasic, M. Schubert, Y. Saito, and Y. Nanishi, Phys. Rev. B 65,115206 (2002).
[69] T. Inushima et al., “Silicon Carbide and Related Materials, 1995: Proceedings of the Sixth International Conference”, Kyoto, Japan, IOP Conf. Proc. No. 142, Chap. 5, p. 971.
[70] T. Inushima, M. Higashiwaki , T. Matsui, Phys. Rev. B 68, 235204 (2003).
[71] Y. M. Chang, H. W. Chu, C. H. Shen, H. Y. Chen, and S. Gwo, Appl. Phys. Lett. 90, 072111 (2007).
[72] V. Lebedev, V. Climalla, T. Baumann, and O. Ambacher, J. Appl. Phys. 100, 094903 (2006).
[73] E. S. Koteles and W. R. Datars, Phys. Rev. B 9, 568-571 (1974).
[74] H. Yokoi, S. Takeyama, and N. Miura, Phys. Rev. B 44, 6519-6522 (1991).
[75] L. F. J. Piper, T. D. Veal, I. Mahboob, and C. F. McConville, Phys. Rev. B 70, 115333 (2004).
[76] V. Yu, Davydov, A. A. Klochikhin, V. V. Emtsev, D. A. Kurdyukov, S. V. Ivanov, V. A. Vekshin, F. Bechstedt, J. Furthmüller, J. Aderhold, J. Graul, A. V. Mudryi, H. Harima, A. Hashimoto, A. Yamamoto, and E.E. Haller, Phys. Status Solidi B 234, 787-795 (2002).
[77] B. Bansal, A. Kadir, A. Bhattacharya, and V. V. Moshchalkov, Appl. Phys. Lett. 93, 021113 (2008).
[78] R. Newman, Phys. Rev. 94, 278 (1954).
[79] J. R. Haynes and W. Shockley, Phys. Rev. 81, 835 (1951).
[80] W. C. Dunlap Jr., Phys. Rev. 91, 1282 (1953).
[81] C. M. Penchina, J. S. Moore, and N. Holonyak, Phy. Rev. 143, 634 (1966).
[82] A. Berkeliev and K. Durdyev, Sov. Phys. Semicond. 5, 646 (1971).
[83] L. A. Balagurov, É. M. Omel’yanovskiî, and V. I. Fistul’, Sov. Phys. Semicond. 12, 557 (1978).
[84] I. Ismailov, D. N. Nasledov, M. A. Sipovskaya, and Yu. S. Smetannikova, Sov. Phys. Semicod. 3, 1154 (1970).
[85] R. H. Bube, Phys. Rev. 99, 1105 (1955).
[86] B. A. Akimov and V. A. Bogoyavlenskiy, Phys. Rev. B 61, 16045 (2000).
[87] R. Sreekumar, R. Jayakrishnan, C. S. Kartha, and K. P. Vijayakumar, J. Appl. Phys. 100, 033707 (2006).
[88] O. E. Raichev and F. T. Vasko, Phys. Rev. B 73, 075204 (2006).
[89] A. S. Chaves and H. Chacham, Appl. Phys. Lett. 66,727 (1995).
[90] A. L. Powell, C. C. Button, J. S. Roberts, and P. I. Rockett, Phys. Rev. Lett. 67, 3010 (1991).
[91] A. I. Yakimov, A. V. Duvrechenskii, A. I. Nikiforov, O. P. Pchelyakov, and A. V. Nenashev, Phys. Rev. B 62, R16283 (2000).
[92] M. C. P. Chang, C. M. Penchina, and J. S. Moore, Phys. Rev. B 4, 1229 (1971).
[93] C. L. Hsiao, L. W. Tu, M. Chen, Z. W. Jiang, N. W. Fan, Y. J. Tu, and K. R. Wang, Japan. J. Appl. Phys. 44, L1076 (2005).
[94] R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, and Y. J. Yang, Appl. Phys. Lett. 91, 223106 (2007).
[95] E. Skipetrov, E. Zvereva, L. Skipetrova, and E. Slyn’ko, Physica B 302, 393 (2001).
[96] P. V. Mieghem, Mod. phys. 64, 755 (1992).
[97] M. Petravic, P. N. K. Deenapanray, M. D. Fraser, A. V. Soldatov, Y. W. Yang, P. A. Anderson, and S. M. Durbin, J. Phys. Chem. B 110, 2984 (2006).
[98] X. Xu, P. Specht, R. Armitage, J. C. Ho, E. R. Weber, and C. Kisielowski, Appl. Phys. Lett. 87, 092102 (2005).
[99] L. H. Dmowski, J. A. Plesiewicz, T. Suski, H. Lu, W. Schaff, M. Kurouchi, Y. Nanishi, L. Konczewicz, V. Cimalla, and O. Ambacher, Appl. Phys. Lett. 86, 262105 (2005).
[100] G. W. Shu, P. F. Wu, M. H. Lo, J. L. Shen, T. Y. Lin, H. J. Chang, Y. F. Chen, C. F. Shih, C. A. Chang, and N. C. Chen, Appl. Phys. Lett. 89, 131913 (2006).
[101] G. Bhuiyan, A. Hashimoto, and A. Yamamoto, J. Appl. Phys. 94, 2779 (2003).
[102] E. Bellotti, B. K. Doshi, K. F. Brennan, J. D. Albrecht, and P. P. Ruden, J. Appl. Phys. 85, 916 (1999).
[103] K. S. A. Butcher and T. L. Tansley, Superlattices Microstruct. 38, 1 (2005).
[104] X. Wang and A. Yoshikawa, Prog. Cryst. Growth Charact. Mater. 48, 42 (2004).
[105] A. Ganguly, L. C. Chen, K. H. Chen, and S. Chattopadhyay, in III-Nitrides Devices and Nanoengineering, edited by Z. C. Feng, Imperial College, UK, (2008).
[106] W. Liu, A. A. Balandin, C. Lee, and H. Y. Lee, Phys. Status Solidi A 202, R135 (2005).
[107] S. Krukowski, A. Witek, J. Adamczyk, J. Jun, M. Bockowski, I. Grzegory, B. Lucznik, G. Nowak, M. Wroblewski, A. Presz, S. Gierlotka, S. Stelmach, B. Palosz, S. Porowski, and P. Zinn, J. Phys. Chem. Solids 59, 289 (1998).
[108] D. I. Florescu, V. M. Asnin, F. H. Pollak, A. M. Jones, J. C. Ramer, M. J. Schurman, and I. Ferguson, Appl. Phys. Lett. 77, 1464 (2000).
[109] S. Yamaguchi, R. Izaki, K. I. Yamagiwa, K. Taki, Y. Iwamura, and A. Yamamoto, Appl. Phys. Lett. 83, 5398 (2003).
[110] K. Xu and A. Yoshikawa, Appl. Phys. Lett. 83, 251 (2003).
[111] J. T. Chen, C. L. Hsiao, H. C. Hsu, C. T. Wu, C. L. Yeh, P. C. Wei, L. C. Chen, and K. H. Chen, J. Phys. Chem. A 111, 6755 (2007).
[112] T. M. Hall, Rev. Sci. Instrum. 31, 125 (1960).
[113] D. G. Cahill and R. O. Pohl, Phys. Rev. B 35, 4067 (1987).
[114] B. V. Seleznev, A. A. Blyablin, A. V. Gavrilov, A. M. Popov, N. V. Suetin, A. V. Kandidov, and A. T. Rakhimov, Diamond Relat. Mater. 4, 1360 (1995).
[115] D. M. Bhusari, C. W. Teng, K. H. Chen, S. L. Wei, and L. C. Chen, Rev. Sci. Instrum. 68, 4180 (1997).
[116] S. Chattopadhyay, L. C. Chen, S. C. Chien, S. T. Lin, and K. H. Chen, J. Appl. Phys. 92, 5150 (2002).
[117] S. Chattopadhyay, L. C. Chen, S. C. Chien, S. T. Lin, C. T. Wu, and K. H. Chen, Thin Solid Films 420, 205 (2002).
[118] E. P. Visser, E. H. Versteegen, and W. J. P. van Enckevort, J. Appl. Phys. 71, 3238 (1992).
[119] K. M. Leung, A. C. Cheung, B. C. Liu, H. K. Woo, C. Sun, X. Q. Shi, and S. T. Lee, Diamond Relat. Mater. 8, 1607 (1999).
[120] J. Hartmann, P. Voigt, and M. Reichling, J. Appl. Phys. 81, 2966 (1997).
[121] A. Mandelis and K. F. Leung, J. Opt. Soc. Am. A 8, 186 (1991).
[122] T. Araki, T. Ueno, H. Naoi, and Y. Nanishi, Phys. Status Solidi C 2, 2316 (2005).
[123] T. Kehagias, A. Delimitis, P. Komninou, E. Iliopoulos, E. Dimakis, A. Georgakilas, and G. Nouet, Appl. Phys. Lett. 86, 151905 (2005).
[124] H. Lu, W. J. Schaff, J. Hwang, H. Wu, W. Yeo, A. Pharkya, and L. F. Eastman, Appl. Phys. Lett. 77, 2548 (2000).