研究生: |
游宏駿 Yu, Hung-jun |
---|---|
論文名稱: |
高整合聚二甲基矽氧烷微流體晶片的製備與測試 Fabrication and test of highly integrated Polydimethylsiloxane microfluidic chip |
指導教授: | 楊雅棠 |
口試委員: |
莊嘉揚
林澤 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 42 |
中文關鍵詞: | 聚二甲基矽氧烷 、微流體晶片 、多層次軟性微影 、大腸桿菌 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於聚二甲基矽氧烷(PDMS)具有透明、透氣、無毒等特性,因此被廣泛地製作成生物晶片,活細胞或細菌在這個材料當中,可以順利成長並且被觀察。我們以多層次軟性微影技術,製備高整合度的PDMS微流體晶片,晶片中包含數十條微流通道,並且擁有閥門開關、泵浦等功能,以電腦程式自動化控制,使溶液操作在納升等級的容積中。我們完成各種功能的驗證,像是在晶片中液體的傳送、泵浦、混合等等,最後,將微流體晶片運用在大腸桿菌的培養,以營養液供給和使用裂解液控制生物膜的成長。
As polydimethylsiloxane (PDMS) is transparent, gas permeable and non-toxic, it is widely made into biochips. Living cells or bacteria present in the material and it can be successfully grown and observed. We use multi-layer soft lithography to fabricate highly integrated PDMS microfluidic chip that contains dozens of micro-flow channels, and has switch valves, pumps and other functions. With computerized program for automatic control, it operates at nanoliter level of liquid volume. We perform qualification of various functionalities such as delivery of solution, pumping and mixing in the chip. Finally, the microfluidic chips are used to do E coli culture with medium supply and lysis step for bio film control.
1. M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer and S. R.Quake, "Monolithic microfabricated valves and pumps by multilayer soft lithography," Science 288, 113 (2000).
2. E.-A. J., P.K. Sorger and K. F. Jensen , "Cells on chips," Nature 442, (2006).
3. C. Hansen and S. R. Quake, "Microfluidics in structural biology: smaller, faster. . . better," Current Opinion in Structural Biology 13, 538 (2003).
4. J. P. Urbanski, W. Thies, C. Rhodes, S. Amarasinghe and T. Thorsen, "Digital microfluidics using soft lithography," Lab on a Chip 6, 96 (2005).
5. J. W. Hong, V. Studer, G. Hang, F. Anderson and S. R. Quake, "A nanoliter-scale nucleic acid processor with parallel architecture," Nature Biotechnology 22, (2004).
6. F. K. Balagadde´, L. You, C. L. Hansen, F. H. Arnold and S. R. Quake, "Long-term monitoring of bacteria undergoing programmed population control in a Microchemostat," Science 309, 137 (2005).
7. D. Herbert, R. Elsworth and R.C. Telling , "The continuous culture of bacteria - a theoretical and experimental study," Journal of General Microbiology 14, 601 (1956).
8. A. Novick , L. Szilard, "Description of the Chemostat," Science 112, 715 (1950).
9. C. C. Spicer, "The Theory of Bacterial Constant Growth Apparatus," Biometrics 11, 225 (1955).
10. D. Mark, S. Haeberle, G. Roth, F. V. Stetten and R. Zengerle, "Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications," Chemical Society Reviews 39, 1153 (2009).
11. T. Thorsen, S. J. Maerkl and S. R. Quake, "Microfluidic Large-Scale Integration," Science 298, 580 (2002).
12. AZ 4620 data sheet.
13. SU-8 data sheet