簡易檢索 / 詳目顯示

研究生: 李融宗
Li, Jung-Tsung
論文名稱: Parametrized Post-Newtonian Limit of Teleparallel Dark Energy Model
指導教授: 耿朝強
Geng, Chao-Qiang
口試委員: 耿朝強
Geng, Chao-Qiang
李靈峰
Li, Ling-Fong
林貴林
Lin, Guey-Lin
楊毅
Yang, Yi
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 35
中文關鍵詞: 弱場展開torsionteleparallel
外文關鍵詞: Parametrized Post-Newtonian Limit, Teleparallel Dark Energy, Non-minimal coupling, weak-field limit, Weitzenbock connection, tetrad, vierbein
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此論文中,我們計算了Teleparallel Dark Energy Model下的Post-Newtonian Limit展開,重力場背景設定在Minkowski background。在此條件下,tetrad和Energy-Momentum tensor由此極限做弱場展開。最後,我們比較teleparallel gravity與廣義相對論的結果。


    We calculate the post-Newtonian limit in the teleparallel equivalent of General Relativity
    (TEGR) with a scalar eld which non-minimally couples to gravity. The background is set
    up at Minkowski spacetime, and both the tetrad eld and energy momentum tensor are
    perturbed in the parametrized post-Newtonian formalism. The comparisons of the post-
    Newtonian result with general relativity and solar system experiments are discussed.

    1 Introduction 1 2 Teleparallel Gravity 2 2.1 General Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 Teleparallel Equivalent to General Relativity (TEGR) . . . . . . . . . . . . . 4 2.3 Teleparallel Dark Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 Method of Post-Newtonian Approximation 7 3.1 Newtonian Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2 Bookkeeping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.3 Energy Momentum Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.4 Post-Newtonian Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5 Standard Post-Newtonian Gauge . . . . . . . . . . . . . . . . . . . . . . . . 14 4 Perturbations in Teleparallel Gravity 16 4.1 Vierbein Perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.2 Linear Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.2.1 (0; 0) component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2.2 (i; j) component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2.3 (0; i) component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.3 Post-Newtonian Limit of (0; 0) component . . . . . . . . . . . . . . . . . . . 23 4.4 Scalar Field Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5 Conclusions 28 Appendix 29 A The Torsion Square 30

    [1] A. Einstein, Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl. 217 (1928)
    [2] F.W. Hehl, P. Von Der Heyde, G.D. Kerlick and J.M. Nester, Rev. Mod. Phys. 48, 393 (1976).
    [3] K. Hayashi and T. Shirafuji, Phys. Rev. D 19, 3524 (1979).
    [4] E. E. Flanagan and E. Rosenthal, Phys. Rev. D 75, 124016 (2007).
    [5] J. Garecki, arXiv:1010.2654 [gr-qc].
    [6] C. -Q. Geng, C. -C. Lee, E. N. Saridakis and Y. -P. Wu, Phys. Lett. B 704, 384 (2011) [arXiv:1109.1092 [hep-th]].
    [7] R. D. Reasenberg, I. I. Shapiro, P. E. MacNeil, R. B. Goldstein, J. C. Breidenthal, J. P. Brenkle, D. L. Cain and T. M. Kaufman et al., Astrophys. J. 234, L219 (1979).
    [8] E. Fomalont, S. Kopeikin, G. Lanyi and J. Benson, Astrophys. J. 699, 1395 (2009) [arXiv:0904.3992 [astro-ph.CO]].
    [9] B. Bertotti, L. Iess and P. Tortora, Nature 425, 374 (2003).
    [10] S. Chandrasekhar, Astrophysical Journal, vol. 142, p.1488
    [11] R. V. Wagoner, Phys. Rev. D 1, 3209 (1970).
    [12] R. V. Wagoner and C. M. Will, Astrophys. J. 210, 764 (1976) [Erratum-ibid. 215, 984 (1977)]. 34
    [13] C.M Will, Theory and Experiment in Gravitational Physics, revisited ed. (Cambridge University Press, Cambridge 1993).
    [14] Weitzenbock, R.,Invariantentheories (P. Noordho , Groningen, 1923).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE