研究生: |
李思瑩 Szu-Ying Li |
---|---|
論文名稱: |
弱G-S-KKM定理與大中取小不等式 Weakly G-S-KKM Theorems and Minimax Inequalities |
指導教授: | 張東輝 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 19 |
中文關鍵詞: | G-凸空間 、弱G-S-KKM函數 、弱G-S-KKM定理 、大中取小不等式 |
外文關鍵詞: | G-convex space, weakly G-S-KKM mapping, weakly G-KKM theorem, minmax inequality |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇論文中,我們是由弱G-KKM函數推廣到弱G-S-KKM函數上,並且得到一些非緊緻條件的推廣型KKM定理。在應用的部分,我們得到一些大中取小不等式定理。本文的結果推廣了M.Balaj[2]的一些結果。
In this paper, we extend the concept of weakly G-KKM mapping to weakly G-S-KKM mapping, and get a generalized KKM theorem without the compact assumption. As applications, we apply this theorem to get some theorems concerning minmax inequalities which generalize some results of [2].
[1]J.P. Aubin and J. Ekeland, Applied Nonlinear Analysis, Wiley, New York, 1984.
[2] M. Balaj, Weakly G-KKM mappings, G-KKM property, and minimax inequalities, J. Math. Anal. Appl. 294(2004), 237-245.
[3] H. Ben-El-Michaiekh and P. Deguire, Approachability and fixed point for non-convex set-valued maps, J. Math. Anal. Appl. 170(1992), 477-500.
[4] T.H. Chang, C.L. Yen, Generalized KKM theorem and its applications, Banyan Math. J. 3 (1996), 21-28.
[5]T. H. Chang and C. L. Yen, KKM property and fixed point theorems, J. Math. Anal. Appl. 203(1996), 224-235.
[6] T. H. Chang, KKM property and Leary-Schauder principles, Far East J. Math. Sci. (1998), 337-350.
[7] K. Fan, A generalization of Tychonoff’s fixed point theorem, Math. Ann. 142(1961), 305-310.
[8] K. Fan, Some properties of convex sets related to fixed point theorems, Math. Ann. 266(1984), 519-537.
[9] B. Knaster, C. Kuratowski, S. Mazurkiewicz, Ein Beweis des Fixpunksatzes for n-dimensionale Simplexe, Fund, Math. 14(1929), 132-137.
[10] M. Lassonde, Fixed points for Kakutani factorizable multifunctions, J. Math. Anal. Appl. 152(1990), 46-60.
[11]Y. L. Lee, G-S-KKM theorem and its applications, Graduate Institute of Mathematics and Science, NHCTC, Hsin Chu, Taiwan.(2003).
[12] L. J. Lin and T. H. Chang, S-KKM theorems, asddle points and minimax inequalities, Nonl. Anal. TMA. 34(1998), 73-86.
[13]S. Naoki, Afurther generalization of the Knaster- Kuratowski- Mazurkiewicz theorem, Proc. Amer. Math. Soc. 111(1991) 187-195.
[14] S. Park, Generalizations of Ky Fan’s matching theorems and their applications, J. Math, Anal. Appl. 141(1989), 164-176.
[15] S. Park, S. P. Singh and B.Watson, Some fixed point theorems for composites of acyclic maps, Proc. Amer. Math. Soc. 121(1994), 1151-1158.
[16] S. Park and H, Kim, Coincidence theorems for admissible multifunctions on generalized convex spaces, J. Math. Anal. Appl. 197(1996), 173-187.
[17] S. Park and H. Kim, Foundations of the KKM theory on generalized convex space, J. Math. Anal. Appl. 209(1997), 551-571.
[18] S. Park, Elments of the KKM theory for generalized convex spaces, Korean J. Comp. Appl. Math. 7(2000) 1-28.
[19] S. Park, Remarks on topologies of generalized convex spaces, Nonlinear Funct. Anal. Appl. 5(2000) 67-79.
[20] S. Park ,Fixed point theorems in locally G-convex spaces, Nonlinear Anal. 48(2002), 869-879.