研究生: |
張立辰 |
---|---|
論文名稱: |
利用三維晶格波茲曼方法模擬兩相流之流場 Three-Dimensional Two Phase Flow Simulation using Lattice Boltzmann Method |
指導教授: | 林昭安 |
口試委員: |
何正榮
牛仰堯 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 53 |
中文關鍵詞: | 兩相晶格波茲曼方法 、高密度比 、親/疏水性邊界 |
外文關鍵詞: | two-phase lattice Boltzmann method, high density ratio, wetting boundary condition |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In this thesis, a three-dimensional lattice Boltzmann two-phase model which is capable of dealing large liquid and gas density ratio and partial wetting surface with a given contact angle is investigated. The LBM model is based on Zheng et al. model of high density ratio with partial wetting boundary condition of Briant et al.
In the present work, a droplet rests on a partial wetting surface with given contact angle is simulated. The results of three-dimensional droplets at different partial wetting condition at equilibrium state are in well agreement with the analytical solutions. High density ratio may cause spurious velocity oscillation because of the interfacial force imbalance. Cases of different contact angle and viscosity ratio are examined. The results show that the spurious velocity is about the order of 10^{-6} in each case. The effect of gravitational force on droplet shape is also discussed in terms of Bond number.
The present model has lots of applications. First, it is applied to simulate liquid lens cases. The simulation result shows good agreement with the experiment done by Hsieh et al. Secondly, phenomena influenced by different wetting surfaces are presented, such as a droplet on heterogeneous surface. Finally, the droplet can be moved by giving gradient of wettability, where the droplet speed is proportional to the gradient. To control the droplet speed, different width of wetting zones are also examined in the study.
[1] U. Frisch, B. Hasslacher, and Y. Pomeau, \Lattice-gas automata for the Navier-
Stokes equation," Phys. Rev. Lett. 56, 1505, (1986).
[2] S. Wolfram, \Cellular automaton fluids 1: Basic theory," J. Stat. Phys. 45,
471, (1986).
[3] F. J. Higuera, S. Sussi, and R. Benzi, \3-dimensional flows in complex
geometries with the lattice Boltzmann method," Europhys. Lett. 9, 345, (1989).
[4] F. J. Higuera, and J. Jem¶enez, \Boltzmann approach to lattice gas
simulations," Europhys. Lett. 9, 663, (1989).
[5] P. L. Bhatnagar, E. P. Gross, and M. Grook, \A model for collision processes
in gases. I. small amplitude processes in charged and neutral one-component
systems," Phys. Rev. E 94, 511 (1954).
[6] S. Harris, \An introduction to the throry of the Boltzmann equation," Holt,
Rinehart and Winston, New York, (1971).
[7] U. Frisch, D. d'Humiµeres, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.
P. Rivet, \Lattice gas hydrodynamics in two and three dimensions," Complex
Syst. 1, 649, (1987).
[8] D. O. Martinez, W. H. Matthaeus, S. Chen, and D. C. Montgomery,
\Comparison of spectral method and lattice Boltzmann simulations of two-
dimensional hydrodynamics," Phys. Fluids 6, 1285, (1994).
[9] R. Scardovelli and S. Zaleski. \Direct numerical simulation of free-surface and
inter‾cal °ow," Annu.Rev.Fluid Mech.,31:567(1999).
[10] S. Osher and R. P, Fedkiw. \Level set method: An overview and some recent
results," J. Comput. Phys., 169:463,(2001).
[11] T. Y. Hou, J.S. Lowengrub,and M.J.Shelley. \Boundary integral methods
for multicomponent °uids and multiphase materials " J. Comput.Phys., 169:
302,(2001).
[12] A.J. Briant, P. Papatzacos, and J. M. Yeomans, \Lattice Boltzmann
simulations of contact line motion in a liquid-gas system. " Phil. Trans. Roy.
Soc. A , 360, 485. (2002)
[13] A. J. Briant, Wagner, A. J. and J. M. Yeomans, \Lattice Boltzmann
simulations of contact line motion: I. Liquid-gas systems. " Phys. Rev. E 69
(2004) 031602
[14] A. J. Briant, J. M. Yeomans, \Lattice Boltzmann simulations of contact line
motion: II. Binary °uids. " Phys. Rev. E 69 (2004) 031603
[15] M. R. Swift, W. R. Osborn, and J. M. Yeomans \Lattice Boltzmann simulation
of nonideal °uids." Phys. Rev. Lett.,75(5):830-833(1995)
[16] M. R. Swift, W. R. Osborn, and J. M. Yeomans \Lattice Boltzmann simulations
of liquid-gas and bunary-°uid systems."Phys. Rev. E,54:5041-5052(1996)
[17] A. Dupuis, J.M. Yeomans, \Lattice Boltzmann modelling of droplets on
chemically heterogeneous surfaces." Future Gener. Comput. Syst. 20 (2004)
993-1001.
[18] X. Shan and H. Chen\ Lattice Boltzmann model for simulating °ows with
multiple phases and components. " Phys. Rev. E, 47:1815-1819,(1993).
[19] Shan, X., and Chen, H., "Simulation of Nonideal Gases and Liquid-GasPhase
Transitions by the Lattice Boltzmann Equation," Phys. Rev. E, 49, pp. 2941-
2948.(1994)
[20] Shan, X., and Doolen, G. D., "Multicomponent Lattice-Boltzmann Model With
Interparticle Interaction," J. Stat. Phys., 81, pp. 379-393.(1995)
[21] J.W. Cahn, J.E Hilliard," Free energy of a nonuniform system.-Interfacial
energy," J. Chem. Phys. 28(2)(1958)
[22] Takada, N.; Misawa, M.; Tomiyama, A. and Hosokawa, S., "Simulation of
bubble motion under gravity by lattice Boltzmann method, "J. Nucl. Sci.
Technol., 38(5), 330. (2001)
[23] T. Inamuro, T. Ogata, S. Tajima, N. Konishi, "A lattice Boltzmann method
for incompressible two-phase °ows with large density di®erences, "J. Comput.
Phys. 198 628. (2004)
[24] T. Lee, C.-L. Lin, "A stable discretization of the lattice Boltzmann equation for
simulation of incompressible two-phase °ows at high density ratio, "J. Comput.
Phys. 206 16-47.(2005)
[25] X. He, S. Chen, R. Zhang, "A lattice Boltzmann scheme for incompressible
multiphase °ow and its application in simulation of Rayleigh-Taylor instability,
"J. Comput. Phys. 152 (2) 642-663. (1999)
[26] D. Jamet, O. Lebaigue, N. Coutris, J.M. Delhaye, \The second gradient method
for the direct numerical simulation of liquid-vapor °ows with phase change, "
J. Comput. Phys. 169 (2001) 624-651.
[27] H. W. Zheng, C. Shu, Y. T. Chew, \A lattice Boltzmann model for multiphase
°ows with large density ratio " JCP, Phys, 218 353-371 (2006)
[28] A. Lamuro, S. Succi, \A Lattice Boltzmann for disordered °uids, " Int. J. Mod.
Phys . B17 145-148 (2003)
[29] Deng Bin, Shi Bao-Chang, Wang Guang-Chao, "A New Lattice Bhatnagar-
Gross-Krook model for the convection-Di®usion Equation with a Source Term"
Chin. Phys . Lett. Vol. 22, NO.2 267 (2005).
[30] Tamas I. Gombosi, \Gas kinetic theorym," Cambridge University Press,
(1994).
[31] X. He, and L. S. Luo, \Theory of the lattice Boltzmann method: From the
Boltzmann equation to the lattice Boltzmann equation," Phys. Rev. E 56,
6811-6817 (1997).
[32] D. A. Wolf-Gladrow, \Lattice-gas cellular automata and lattice Boltzmann
models - an introduction," Springer, Lecture Notes in Mathematics, p.159,
(2000).
[33] J.S. Rowlinson, B. Widom, \Molecular Theory of Capillarity, Clarendon,
"Oxford, (1989).
[34] V.M. Kendon, M.E. Cates, I. Pagonabarraga, J.-C. Desplat, P. Bladon,
\Inertial e®ects in three-dimensional spinodal decomposition of a symmetric
binary °uid mixture: a lattice Boltzmann study, "J. Fluid Mech. 440 147-203.
(2001).
[35] V.M. Kendon, M.E. Cates, I. Pagonabarraga, J.-C. Desplat, P. Bladon,
\Inertial e®ects in three-dimensional spinodal decomposition of a symmetric
binary °uid mixture: a lattice Boltzmann study", J. Fluid Mech. 440 (2001).
[36] H. W. Zheng, C. Shu, Y. T. Chew, \Lattice Boltzmann interface capturing
method for imcompressible, " Phys, Rev, E72, 056705 (2005).
[37] D. Jacqmin, \Calculation of two-phase Navier-Stokes °ows using phase-‾eld
modeling, " J. Comput. Phys. 155 (1999) 96-127.
[38] Z. Guo, C. Zhen, B. Shi, \Discrete lattice e®ects on the forcing term in the
lattice Boltzmann method, " Phys. Rev. E 65 (4) ,046308.(2002).
[39] C. Cheng \Curved boundary techniques in lattice Boltzmann method to
simulate complex geometry °ows, " , master thesis, National Tsing Hua
University, Taiwan, (2007).
[40] J. W. Cahn, \Critical point wetting." J. Chem. Phys. 66, 3667-3672 (1977).
[41] J. J. Huang, C. Shu, Y. T. Chew, H. W. Zheng, \Numerical Study of 2d
Multiphase Flows Over Grooved Surface by Lattice Boltzmann Method," Int.
J. Mod. Phys C Vol. 18, No. 4 (2007) 492-500.
[42] Y.Y. Yan , Y.Q. Zu, \A lattice Boltzmann method for incompressible two-
phase °ows on partial wetting surface with large density ratio," J. Comput.
Phys., 227 (2007) 763-775.
[43] W.H. Hsieh, J.H. Chen, \Lens-pro‾le control by electrowetting fabrication
technique." IEEE Photonics Technol. Lett. 17 (2005) 606-608.
[44] M. Cheng, J.S. Hua, J. Lou, \Simulation of bubble-bubble interaction using a
lattice Boltzmann method." Comput. Fluids 39 (2010) 260-270.
[45] M.G. Lippman, \Relations entre les phenom`enes electriques et capillaires."
Ann. Chim. Phys. 5 (1875) 494-459.
[46] B. Berge, \Electrocapillarite et mouillage de ‾lms isolants par l'eau." C. R.
Acad. Sci. II (1993) 317-157.
[47] T. Lee, P.F. Fischer, \Eliminating parasitic currents in the lattice Boltzmann
equation method for nonideal gases." Phys. Rev. E74 (2006) 046709.
[48] C.F. Ho, C. Chang, K.H. Lin, C.A. Lin, \Consistent Boundary Conditions
for 2D and 3D Lattice Boltzmann Simulations." CMES-Comp. Model Eng. 44
(2009) 137-155.
[49] J. Zhang, \Lattice Boltzmann method for micro°uidics: models and
applications." Micro°uid. Nano°uid. 10 (2011) 1-28.
[50] Q. Chang, J.I.D. Alexander, \Analysis of single droplet dynamics on striped
surface domains using a lattice Boltzmann method." Microfulid. Nano°uid. 2
(2006) 309-326.
[51] C.M. Chen, C.H. Liu, \An electrolysis-bubble-actuated micropump based on
the roughness gradient design of hydrophobic surface." J. Microelectromech.
Syst. 16 (2007) 1095-1105.