簡易檢索 / 詳目顯示

研究生: 張立辰
論文名稱: 利用三維晶格波茲曼方法模擬兩相流之流場
Three-Dimensional Two Phase Flow Simulation using Lattice Boltzmann Method
指導教授: 林昭安
口試委員: 何正榮
牛仰堯
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 53
中文關鍵詞: 兩相晶格波茲曼方法高密度比親/疏水性邊界
外文關鍵詞: two-phase lattice Boltzmann method, high density ratio, wetting boundary condition
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this thesis, a three-dimensional lattice Boltzmann two-phase model which is capable of dealing large liquid and gas density ratio and partial wetting surface with a given contact angle is investigated. The LBM model is based on Zheng et al. model of high density ratio with partial wetting boundary condition of Briant et al.

    In the present work, a droplet rests on a partial wetting surface with given contact angle is simulated. The results of three-dimensional droplets at different partial wetting condition at equilibrium state are in well agreement with the analytical solutions. High density ratio may cause spurious velocity oscillation because of the interfacial force imbalance. Cases of different contact angle and viscosity ratio are examined. The results show that the spurious velocity is about the order of 10^{-6} in each case. The effect of gravitational force on droplet shape is also discussed in terms of Bond number.

    The present model has lots of applications. First, it is applied to simulate liquid lens cases. The simulation result shows good agreement with the experiment done by Hsieh et al. Secondly, phenomena influenced by different wetting surfaces are presented, such as a droplet on heterogeneous surface. Finally, the droplet can be moved by giving gradient of wettability, where the droplet speed is proportional to the gradient. To control the droplet speed, different width of wetting zones are also examined in the study.


    1 Introduction 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Lattice Boltzmann method . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Multiphase and multicomponent fluid systems . . . . . . . . . 2 1.1.3 Partial wetting boundary . . . . . . . . . . . . . . . . . . . . . 3 1.2 Literature survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Lattice Boltzmann multiphase model . . . . . . . . . . . . . . 4 1.2.2 Wettability control on the solid surface . . . . . . . . . . . . . 6 1.3 Electrowetting and its applications . . . . . . . . . . . . . . . . . . . 8 1.4 Objective and motivation . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Theory and governing equations 10 2.1 The Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 The BGK and the low-Mach-number approximation . . . . . . . . . . 11 2.2.1 The BGK approximation . . . . . . . . . . . . . . . . . . . . . 11 2.2.2 The low-Mach-number approximation . . . . . . . . . . . . . . 13 2.3 Discretization of the Boltzmann equation . . . . . . . . . . . . . . . . 14 2.3.1 Discretization of phase space . . . . . . . . . . . . . . . . . . . 14 2.3.2 Dicretization of time . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 The free-energy model . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.1 The free-energy function . . . . . . . . . . . . . . . . . . . . . 17 2.4.2 Analytical solution of interface profile . . . . . . . . . . . . . . 18 2.5 A Lattice Boltzmann model for multiphase flows with large density ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.5.1 The governing equation . . . . . . . . . . . . . . . . . . . . . . 19 2.5.2 Lattice Boltzmann equation . . . . . . . . . . . . . . . . . . . 19 2.5.3 Interface capturing equation . . . . . . . . . . . . . . . . . . . 20 2.6 Wetting theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.6.1 Electrowetting theory . . . . . . . . . . . . . . . . . . . . . . . 21 2.6.2 Wettability Modelling . . . . . . . . . . . . . . . . . . . . . . 21 3 Numerical algorithm 23 3.1 Simulation procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 Boundary conditions for the computational domain . . . . . . . . . . 24 3.2.1 Velocity boundary conditions for solving fluid °ow . . . . . . . 24 3.2.2 Bounce back boundary conditions for solving interface capture equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3 Treatment on the gradient of the order parameter . . . . . . . . . . . 25 3.3.1 Gradient of the order parameter: Inner points . . . . . . . . . 26 3.3.2 Gradient of the order parameter: Boundaries . . . . . . . . . . 26 3.4 Treatment on the Laplacian order parameter . . . . . . . . . . . . . . 27 3.4.1 Laplacian order parameter: Inner points . . . . . . . . . . . . 27 3.4.2 Laplacian order parameter: Boundaries . . . . . . . . . . . . . 28 3.5 Periodic boundary condition . . . . . . . . . . . . . . . . . . . . . . . 28 3.6 Parallel algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4 Numerical results 30 4.1 Wettability control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2 Check of parasitic currents . . . . . . . . . . . . . . . . . . . . . . . . 31 4.3 Effect of Bond number . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.4 Lens fabrication technique by electrowetting . . . . . . . . . . . . . . 34 4.5 Droplet spreading on heterogeneous surface . . . . . . . . . . . . . . . 38 4.5.1 Multi-strips . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.5.2 Single-strip and breakup . . . . . . . . . . . . . . . . . . . . . 38 4.5.3 Intersecting-strips . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.6 Droplet moving with di®erent gradient of wettability . . . . . . . . . 41 4.7 Variation of partial wetting zone . . . . . . . . . . . . . . . . . . . . . 41 5 Conclusions 46

    [1] U. Frisch, B. Hasslacher, and Y. Pomeau, \Lattice-gas automata for the Navier-
    Stokes equation," Phys. Rev. Lett. 56, 1505, (1986).
    [2] S. Wolfram, \Cellular automaton fluids 1: Basic theory," J. Stat. Phys. 45,
    471, (1986).
    [3] F. J. Higuera, S. Sussi, and R. Benzi, \3-dimensional flows in complex
    geometries with the lattice Boltzmann method," Europhys. Lett. 9, 345, (1989).
    [4] F. J. Higuera, and J. Jem¶enez, \Boltzmann approach to lattice gas
    simulations," Europhys. Lett. 9, 663, (1989).
    [5] P. L. Bhatnagar, E. P. Gross, and M. Grook, \A model for collision processes
    in gases. I. small amplitude processes in charged and neutral one-component
    systems," Phys. Rev. E 94, 511 (1954).
    [6] S. Harris, \An introduction to the throry of the Boltzmann equation," Holt,
    Rinehart and Winston, New York, (1971).
    [7] U. Frisch, D. d'Humiµeres, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.
    P. Rivet, \Lattice gas hydrodynamics in two and three dimensions," Complex
    Syst. 1, 649, (1987).
    [8] D. O. Martinez, W. H. Matthaeus, S. Chen, and D. C. Montgomery,
    \Comparison of spectral method and lattice Boltzmann simulations of two-
    dimensional hydrodynamics," Phys. Fluids 6, 1285, (1994).
    [9] R. Scardovelli and S. Zaleski. \Direct numerical simulation of free-surface and
    inter‾cal °ow," Annu.Rev.Fluid Mech.,31:567(1999).
    [10] S. Osher and R. P, Fedkiw. \Level set method: An overview and some recent
    results," J. Comput. Phys., 169:463,(2001).
    [11] T. Y. Hou, J.S. Lowengrub,and M.J.Shelley. \Boundary integral methods
    for multicomponent °uids and multiphase materials " J. Comput.Phys., 169:
    302,(2001).
    [12] A.J. Briant, P. Papatzacos, and J. M. Yeomans, \Lattice Boltzmann
    simulations of contact line motion in a liquid-gas system. " Phil. Trans. Roy.
    Soc. A , 360, 485. (2002)
    [13] A. J. Briant, Wagner, A. J. and J. M. Yeomans, \Lattice Boltzmann
    simulations of contact line motion: I. Liquid-gas systems. " Phys. Rev. E 69
    (2004) 031602
    [14] A. J. Briant, J. M. Yeomans, \Lattice Boltzmann simulations of contact line
    motion: II. Binary °uids. " Phys. Rev. E 69 (2004) 031603
    [15] M. R. Swift, W. R. Osborn, and J. M. Yeomans \Lattice Boltzmann simulation
    of nonideal °uids." Phys. Rev. Lett.,75(5):830-833(1995)
    [16] M. R. Swift, W. R. Osborn, and J. M. Yeomans \Lattice Boltzmann simulations
    of liquid-gas and bunary-°uid systems."Phys. Rev. E,54:5041-5052(1996)
    [17] A. Dupuis, J.M. Yeomans, \Lattice Boltzmann modelling of droplets on
    chemically heterogeneous surfaces." Future Gener. Comput. Syst. 20 (2004)
    993-1001.
    [18] X. Shan and H. Chen\ Lattice Boltzmann model for simulating °ows with
    multiple phases and components. " Phys. Rev. E, 47:1815-1819,(1993).
    [19] Shan, X., and Chen, H., "Simulation of Nonideal Gases and Liquid-GasPhase
    Transitions by the Lattice Boltzmann Equation," Phys. Rev. E, 49, pp. 2941-
    2948.(1994)
    [20] Shan, X., and Doolen, G. D., "Multicomponent Lattice-Boltzmann Model With
    Interparticle Interaction," J. Stat. Phys., 81, pp. 379-393.(1995)
    [21] J.W. Cahn, J.E Hilliard," Free energy of a nonuniform system.-Interfacial
    energy," J. Chem. Phys. 28(2)(1958)
    [22] Takada, N.; Misawa, M.; Tomiyama, A. and Hosokawa, S., "Simulation of
    bubble motion under gravity by lattice Boltzmann method, "J. Nucl. Sci.
    Technol., 38(5), 330. (2001)
    [23] T. Inamuro, T. Ogata, S. Tajima, N. Konishi, "A lattice Boltzmann method
    for incompressible two-phase °ows with large density di®erences, "J. Comput.
    Phys. 198 628. (2004)
    [24] T. Lee, C.-L. Lin, "A stable discretization of the lattice Boltzmann equation for
    simulation of incompressible two-phase °ows at high density ratio, "J. Comput.
    Phys. 206 16-47.(2005)
    [25] X. He, S. Chen, R. Zhang, "A lattice Boltzmann scheme for incompressible
    multiphase °ow and its application in simulation of Rayleigh-Taylor instability,
    "J. Comput. Phys. 152 (2) 642-663. (1999)
    [26] D. Jamet, O. Lebaigue, N. Coutris, J.M. Delhaye, \The second gradient method
    for the direct numerical simulation of liquid-vapor °ows with phase change, "
    J. Comput. Phys. 169 (2001) 624-651.
    [27] H. W. Zheng, C. Shu, Y. T. Chew, \A lattice Boltzmann model for multiphase
    °ows with large density ratio " JCP, Phys, 218 353-371 (2006)
    [28] A. Lamuro, S. Succi, \A Lattice Boltzmann for disordered °uids, " Int. J. Mod.
    Phys . B17 145-148 (2003)
    [29] Deng Bin, Shi Bao-Chang, Wang Guang-Chao, "A New Lattice Bhatnagar-
    Gross-Krook model for the convection-Di®usion Equation with a Source Term"
    Chin. Phys . Lett. Vol. 22, NO.2 267 (2005).
    [30] Tamas I. Gombosi, \Gas kinetic theorym," Cambridge University Press,
    (1994).
    [31] X. He, and L. S. Luo, \Theory of the lattice Boltzmann method: From the
    Boltzmann equation to the lattice Boltzmann equation," Phys. Rev. E 56,
    6811-6817 (1997).
    [32] D. A. Wolf-Gladrow, \Lattice-gas cellular automata and lattice Boltzmann
    models - an introduction," Springer, Lecture Notes in Mathematics, p.159,
    (2000).
    [33] J.S. Rowlinson, B. Widom, \Molecular Theory of Capillarity, Clarendon,
    "Oxford, (1989).
    [34] V.M. Kendon, M.E. Cates, I. Pagonabarraga, J.-C. Desplat, P. Bladon,
    \Inertial e®ects in three-dimensional spinodal decomposition of a symmetric
    binary °uid mixture: a lattice Boltzmann study, "J. Fluid Mech. 440 147-203.
    (2001).
    [35] V.M. Kendon, M.E. Cates, I. Pagonabarraga, J.-C. Desplat, P. Bladon,
    \Inertial e®ects in three-dimensional spinodal decomposition of a symmetric
    binary °uid mixture: a lattice Boltzmann study", J. Fluid Mech. 440 (2001).
    [36] H. W. Zheng, C. Shu, Y. T. Chew, \Lattice Boltzmann interface capturing
    method for imcompressible, " Phys, Rev, E72, 056705 (2005).
    [37] D. Jacqmin, \Calculation of two-phase Navier-Stokes °ows using phase-‾eld
    modeling, " J. Comput. Phys. 155 (1999) 96-127.
    [38] Z. Guo, C. Zhen, B. Shi, \Discrete lattice e®ects on the forcing term in the
    lattice Boltzmann method, " Phys. Rev. E 65 (4) ,046308.(2002).
    [39] C. Cheng \Curved boundary techniques in lattice Boltzmann method to
    simulate complex geometry °ows, " , master thesis, National Tsing Hua
    University, Taiwan, (2007).
    [40] J. W. Cahn, \Critical point wetting." J. Chem. Phys. 66, 3667-3672 (1977).
    [41] J. J. Huang, C. Shu, Y. T. Chew, H. W. Zheng, \Numerical Study of 2d
    Multiphase Flows Over Grooved Surface by Lattice Boltzmann Method," Int.
    J. Mod. Phys C Vol. 18, No. 4 (2007) 492-500.
    [42] Y.Y. Yan , Y.Q. Zu, \A lattice Boltzmann method for incompressible two-
    phase °ows on partial wetting surface with large density ratio," J. Comput.
    Phys., 227 (2007) 763-775.
    [43] W.H. Hsieh, J.H. Chen, \Lens-pro‾le control by electrowetting fabrication
    technique." IEEE Photonics Technol. Lett. 17 (2005) 606-608.
    [44] M. Cheng, J.S. Hua, J. Lou, \Simulation of bubble-bubble interaction using a
    lattice Boltzmann method." Comput. Fluids 39 (2010) 260-270.
    [45] M.G. Lippman, \Relations entre les phenom`enes electriques et capillaires."
    Ann. Chim. Phys. 5 (1875) 494-459.
    [46] B. Berge, \Electrocapillarite et mouillage de ‾lms isolants par l'eau." C. R.
    Acad. Sci. II (1993) 317-157.
    [47] T. Lee, P.F. Fischer, \Eliminating parasitic currents in the lattice Boltzmann
    equation method for nonideal gases." Phys. Rev. E74 (2006) 046709.
    [48] C.F. Ho, C. Chang, K.H. Lin, C.A. Lin, \Consistent Boundary Conditions
    for 2D and 3D Lattice Boltzmann Simulations." CMES-Comp. Model Eng. 44
    (2009) 137-155.
    [49] J. Zhang, \Lattice Boltzmann method for micro°uidics: models and
    applications." Micro°uid. Nano°uid. 10 (2011) 1-28.
    [50] Q. Chang, J.I.D. Alexander, \Analysis of single droplet dynamics on striped
    surface domains using a lattice Boltzmann method." Microfulid. Nano°uid. 2
    (2006) 309-326.
    [51] C.M. Chen, C.H. Liu, \An electrolysis-bubble-actuated micropump based on
    the roughness gradient design of hydrophobic surface." J. Microelectromech.
    Syst. 16 (2007) 1095-1105.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE