研究生: |
黃氏美惠 Huynh, Thi My Hue |
---|---|
論文名稱: |
具邊際效應標靶肺部遞送藥物載體應用於程式化抗原捕捉傳遞於樹突細胞 Programmed Antigen Capture-Harnessed Dendritic Cells by Margination-Mimicking Lung Delivery |
指導教授: |
胡尚秀
Hu, Shang-Hsiu |
口試委員: |
姜文軒
Chiang, Wen-Hsuan 黃振煌 Huang, Jen-Huang 張佳智 Chang, Chia-Chih 李亦淇 Lee, I-Chi 張建文 Chang, Chien-Wen |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 156 |
中文關鍵詞: | 肺轉移 、穿透 、細胞膜仿生 、銅凋亡 、抗原捕獲 、紅細胞攜帶 、免疫療法 |
外文關鍵詞: | cell membrane mimetic, hitchhiking |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在癌症免疫療法中,像是免疫檢查點阻斷(ICB)和T細胞輸入療法(T-cell-based adoptive cell transfer therapy),已成為腫瘤治療上的突破性方法,徹底改變對抗各種惡性腫瘤的治療方式,特別是對肺癌的治療帶來優勢。免疫抑制腫瘤微環境(TME)是抗腫瘤反應中的核心因子,可以限制免疫檢查點阻斷的免疫治療效果,例如程序性細胞死亡1抗體(PD-1)及其配體(PD-L1)抗體透過抑制細胞毒性T淋巴球(CTL)的抗腫瘤免疫原性。在抗腫瘤免疫反應活化後,細胞毒性T淋巴球的活化、增殖和分化在殺死腫瘤細胞中發揮關鍵作用,為可活化癌症免疫療法的有效策略或替代方法。為了誘導T細胞活化並增強腫瘤免疫治療,有一種新型策略是在目標器官處收集功能性製劑以提高抗原免疫原性。因此,我們開發了基於IONP多功能的細胞膜模擬共聚物(合成細胞)和紅血球(天然細胞),如下:(1)透過級聯響應細胞膜模擬共聚物包裹奈米樹莓進行程序性肺轉移免疫治療-介導的艾司洛莫-銅遞送,以及(2) 透過細胞遷移作用肺部遞送來編程抗原捕獲利用的樹突狀細胞。
在第一部分中,研究了一種包含級聯響應細胞膜模擬共聚物(zwitterionic 2-methacryloyloxyethyl phosphorylcholine-co-3-hydroxypyridin-4-one,PH)和銅凋亡(cuproptosis)分子(elesclomol-Copper,Es-Cu)用於編程T細胞浸潤的腫瘤穿透磁性顆粒(TUP)。特別是使用奈米樹莓樣氧化鐵奈米顆粒(NR)作為高溫熱療平台,這是包括免疫原性細胞死亡(ICD)和逆轉免疫抑制腫瘤微環境在內的雙重免疫療法。在轉移簇中,ES和銅離子在細胞內環境和熱療的觸發下很容易釋放。ES和銅離子同時誘導癌細胞的銅凋亡並刺激免疫反應。兩性離子MPC結構受細胞膜的生物附著作用,而3-hydroxypyridin-4-one結構受螯合劑和抗原儲存庫啟發,將自體腫瘤相關抗原運送至樹突狀細胞,從而誘導持續的免疫活化。
在第二部分中,結合了紅血球遞送(RBC hitchhiking)和免疫調節特徵,通過在紅血球(RBCs)表面加載多粒徑氧化鐵奈米結構(MIO@RBC)進行評估。特別是使用紅細胞作為天然載體劑進行肺腫瘤特異性藥物遞送,通過放置奈米顆粒和多粒徑氧化鐵奈米結構MIOs,可在施加交變磁場(AFM)時作為摩擦熱發生器,以及作為抗原捕獲劑將新抗原和損傷相關分子模式遞送至淋巴結,有助於有效的T細胞招募和免疫療法。MIO@RBC顯示出優異的免疫逃逸和腫瘤特異性靶向能力,顯著提高了體內循環壽命和高腫瘤積聚。
Cancer immunotherapies, including immune checkpoint blockade (ICB) and T-cell-based adoptive cell transfer therapy, has emerged as a groundbreaking approach in the field of oncology, revolutionizing the way we combat various types of malignancies, including lung cancer with its advantages. The immunosuppressive tumor microenvironment (TME), a central factor of the antitumor response, can limit the immunotherapeutic effects of immune checkpoint blockades (ICBs), such as programmed cell death 1 antibodies (PD-1) and its ligand (PD-L1) antibodies by inhibiting the cytotoxic T lymphocytes (CTLs) antitumor immunogenicity. Upon the activation of antitumor immune response, the effective activation, proliferation and differentiation of CTLs, which play a critical role in killing tumor cells, is an effective design strategy and alternative approaches toward activatable cancer immunotherapy. To elicit T cells and achieve the enhanced tumor immunotherapy, a promising strategy is collected functional agents at the targeted organ to improve antigen immunogenicity. Therefore, we developed the IONP multifunction-based cell membrane-mimetic copolymer (synthetic cell), and red blood cells (living cell), as follow: (1) Programmed Lung Metastasis Immunotherapy via Cascade-Responsive Cell Membrane-Mimetic Copolymer-Wrapped Nanoraspberry-Mediated Elesclomol-Copper Delivery, and (2) Programmed antigen capture-harnessed dendritic cells by margination-hitchhiking lung delivery.
In the first part, a tumor penetrating magnetic particles (TUP) containing the cascade-responsive cell membrane-mimetic copolymer (zwitterionic 2-methacryloyloxyethyl phosphorylcholine-co-3-hydroxypyridin-4-one, PH) and cuproptosis molecules (elesclomol-copper, EsCu) for programming T cell infiltration is investigated. In particular, the using of nanorasberry like iron oxide nanoparticles (NR) as platforms for the hyperthermia therapy, which is synergized immunotherapy including immunogenic cell death (ICD) and reversing the immunosuppressive tumor microenvironment. In metastatic clusters, ES and Cu, triggered by intracellular environments and hyperthermia, are readily released. ES and Cu simultaneously induce cuproptosis of cancer cells and stimulate immune responses. The zwitterionic MPC block was inspired by the antifouling structure of cell membranes, and the 3-hydroxypyridin-4-one block was inspired by chelating agent, and antigen reservoirs, transporting autologous tumor-associated antigens to dendritic cells, thereby inducing prolonged immune activation. The therapies facilitate the release of tumor-associated antigens, including neoantigens and damage-associated molecular patterns
In the second part, the combines the features of RBC hitchhiking and immunomodulatory are evaluated by loading a multi-grained iron oxide nanostructures onto the surface of RBC (MIO@RBC). Particularly, the employment of red blood cells (RBCs) as natural carrier agents for lung tumor-specific drug delivery by placing nanoparticles, and a multi-grained iron oxide nanostructure MIOs can be used as a frictional heat generator with applying an alternating magnetic field (AFM), as well as an antigen capture agent to deliver neoantigens and damage-associated molecular patterns to lymph nodes, contributing to efficient T cell recruitment and immunotherapy. MIO@RBC showed the excellent immune escape and tumor-specific targeting capabilities, which significantly improved the in vivo circulation lifetime and high tumor accumulation.
[1] Cotes J. E., Chinn D. J., Miller M. R., Lung function: physiology, measurement and application in medicine, John Wiley & Sons, 2009.
[2] Barta J. A., Powell C. A., Wisnivesky J. P., Global epidemiology of lung cancer. Ann. Glob. Health, (2019) 85.
[3] Siegel R. L., Miller K. D., Wagle N. S., Jemal A., Cancer statistics, 2023. CA Cancer J. Clin., (2023) 73, 17.
[4] Ettinger D. S., Akerley W., Bepler G., Blum M. G., Chang A., Cheney R. T., Chirieac L. R., D'Amico T. A., Demmy T. L., Ganti A. K. P., Non–small cell lung cancer. J. Natl. Compr. Canc. Netw., (2010) 8, 740.
[5] Collins L. G., Haines C., Perkel R., Enck R. E., Lung cancer: diagnosis and management. Am. Fam. Physician., (2007) 75, 56.
[6] Brenner J. S., Kiseleva R. Y., Glassman P. M., Parhiz H., Greineder C. F., Hood E. D., Shuvaev V. V., Muzykantov V. R., The new frontiers of the targeted interventions in the pulmonary vasculature: precision and safety (2017 Grover Conference Series). Pulm. Circ., (2018) 8, 2045893217752329.
[7] Gehr P., Bachofen M., Weibel E. R., The normal human lung: ultrastructure and morphometric estimation of diffusion capacity. Respir. Physiol., (1978) 32, 121.
[8] Dua K., Malyla V., Singhvi G., Wadhwa R., Krishna R. V., Shukla S. D., Shastri M. D., Chellappan D. K., Maurya P. K., Satija S., Increasing complexity and interactions of oxidative stress in chronic respiratory diseases: an emerging need for novel drug delivery systems. Chem. Biol. Interact., (2019) 299, 168.
[9] Raguraman R., Srivastava A., Munshi A., Ramesh R., Therapeutic approaches targeting molecular signaling pathways common to diabetes, lung diseases and cancer. Adv. Drug Deliv. Rev., (2021) 178, 113918.
[10] Torres A., Blasi F., Dartois N., Akova M., Which individuals are at increased risk of pneumococcal disease and why? Impact of COPD, asthma, smoking, diabetes, and/or chronic heart disease on community-acquired pneumonia and invasive pneumococcal disease. Thorax, (2015) 70, 984.
[11] Yang I. A., Jenkins C. R., Salvi S. S., Chronic obstructive pulmonary disease in never-smokers: risk factors, pathogenesis, and implications for prevention and treatment. Lancet Respir. Med., (2022) 10, 497.
[12] de Visser K. E., Joyce J. A., The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell, (2023) 41, 374.
[13] Langley R. R., Fidler I. J., Tumor cell-organ microenvironment interactions in the pathogenesis of cancer metastasis. Endocr. Rev., (2007) 28, 297.
[14] Riihimäki M., Thomsen H., Sundquist K., Sundquist J., Hemminki K., Clinical landscape of cancer metastases. Cancer Med., (2018) 7, 5534.
[15] Jiao Y., Lv Q., Does primary tumor resection induce accelerated metastasis in breast cancer? A review. J. Surg. Res., (2023) 283, 1005.
[16] Wong S. Y., Hynes R. O., Lymphatic or hematogenous dissemination: how does a metastatic tumor cell decide? Cell cycle, (2006) 5, 812.
[17] Massague J., Ganesh K., Metastasis-initiating cells and ecosystems. Cancer Discov., (2021) 11, 971.
[18] Altorki N. K., Markowitz G. J., Gao D., Port J. L., Saxena A., Stiles B., McGraw T., Mittal V., The lung microenvironment: an important regulator of tumour growth and metastasis. Nat. Rev. Cancer., (2019) 19, 9.
[19] Geiger T. R., Peeper D. S., Metastasis mechanisms. Biochim. Biophys. Acta., (2009) 1796, 293.
[20] Roma-Rodrigues C., Mendes R., Baptista P. V., Fernandes A. R., Targeting tumor microenvironment for cancer therapy. Int. J. Mol. Sci., (2019) 20, 840.
[21] Karras P., Black J. R., McGranahan N., Marine J. C., Decoding the interplay between genetic and non-genetic drivers of metastasis. Nature, (2024) 629, 543.
[22] Klein C. A., Cancer progression and the invisible phase of metastatic colonization. Nat. Rev. Cancer., (2020) 20, 681.
[23] Massagué J., Obenauf A. C., Metastatic colonization by circulating tumour cells. Nature, (2016) 529, 298.
[24] Saxena M., Christofori G., Rebuilding cancer metastasis in the mouse. Mol. Oncol., (2013) 7, 283.
[25] Zhao Z., Ukidve A., Gao Y., Kim J., Mitragotri S., Erythrocyte leveraged chemotherapy (ELeCt): Nanoparticle assembly on erythrocyte surface to combat lung metastasis. Sci. Adv., (2019) 5, eaax9250.
[26] Allemani C., Matsuda T., Di Carlo V., Harewood R., Matz M., Nikšić M., Bonaventure A., Valkov M., Johnson C. J., Estève J., Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. The Lancet, (2018) 391, 1023.
[27] Zheng X., Song X., Zhu G., Pan D., Li H., Hu J., Xiao K., Gong Q., Gu Z., Luo K., Nanomedicine Combats Drug Resistance in Lung Cancer. Adv. Mater., (2024) 36, 2308977.
[28] Vinod S. K., Hau E., Radiotherapy treatment for lung cancer: Current status and future directions. Respirology, (2020) 25, 61.
[29] Zhu Z., Liu W., Gotlieb V., The rapidly evolving therapies for advanced melanoma—Towards immunotherapy, molecular targeted therapy, and beyond. Crit. Rev. Oncol. Hematol., (2016) 99, 91.
[30] Spiro S. G., Porter J. C., Lung cancer—where are we today? Current advances in staging and nonsurgical treatment. Am. J. Respir. Crit. Care Med., (2002) 166, 1166.
[31] Parker A. L., Benguigui M., Fornetti J., Goddard E., Lucotti S., Insua-Rodríguez J., Wiegmans A. P., Current challenges in metastasis research and future innovation for clinical translation. Clin Exp Metastasis, (2022) 39, 263.
[32] AlEnazi N., Alanazi A. Q., Al Rabia M. W., Albisi F., Treatment of Cancer. Mol. Cancer. Ther., (2023) 122.
[33] Masi G., Ferrero A., Marino D., Timing of medical therapy and surgery in liver metastatic colorectal cancer. Cancer Breaking News, (2016) 4, 12.
[34] Hellmann M., Li B., Chaft J., Kris M., Chemotherapy remains an essential element of personalized care for persons with lung cancers. Ann. Oncol., (2016) 27, 1829.
[35] Vasan N., Baselga J., Hyman D. M., A view on drug resistance in cancer. Nature, (2019) 575, 299.
[36] Gascoigne K. E., Taylor S. S., How do anti-mitotic drugs kill cancer cells? J. Cell Sci., (2009) 122, 2579.
[37] Gajewski T. F., Cancer immunotherapy. Mol. Oncol., (2012) 6, 242.
[38] Zhao Z., Ukidve A., Krishnan V., Fehnel A., Pan D. C., Gao Y., Kim J., Evans M. A., Mandal A., Guo J., Systemic tumour suppression via the preferential accumulation of erythrocyte-anchored chemokine-encapsulating nanoparticles in lung metastases. Nat. Biomed. Eng., (2021) 5, 441.
[39] Li J., Yu X., Jiang Y., He S., Zhang Y., Luo Y., Pu K., Second near‐infrared photothermal semiconducting polymer nanoadjuvant for enhanced cancer immunotherapy. Adv. Mater., (2021) 33, 2003458.
[40] Cheng W., Su Y. L., Hsu H. H., Lin Y. H., Chu L. A., Huang W. C., Lu Y. J., Chiang C. S., Hu S. H., Rabies virus glycoprotein-mediated transportation and T cell infiltration to brain tumor by magnetoelectric gold yarnballs. ACS nano, (2022) 16, 4014.
[41] Ding Y., Wang Y., Hu Q., Recent advances in overcoming barriers to cell-based delivery systems for cancer immunotherapy. Exploration, (2022) 2, 20210106.
[42] Wei S. C., Duffy C. R., Allison J. P., Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discov., (2018) 8, 1069.
[43] Yang Y., Liu H., Chen Y., Xiao N., Zheng Z., Liu H., Wan J., Liquid biopsy on the horizon in immunotherapy of non-small cell lung cancer: current status, challenges, and perspectives. Cell Death Dis., (2023) 14, 230.
[44] Marin-Acevedo J. A., Kimbrough E. O., Manochakian R., Zhao Y. J., Lou Y. Y., Immunotherapies targeting stimulatory pathways and beyond. J. Hematol. Oncol., (2021) 14.
[45] Zhang C., Hu Y., Xiao W. H., Tian Z. G., Chimeric antigen receptor- and natural killer cell receptor-engineered innate killer cells in cancer immunotherapy. Cell. Mol. Immunol., (2021) 18, 2083.
[46] Ghimire T. R., Benson R. A., Garside P., Brewer J. M., Alum increases antigen uptake, reduces antigen degradation and sustains antigen presentation by DCs in vitro. Immunol. Lett., (2012) 147, 55.
[47] Jensen P. E., Mechanisms of Antigen Presentation. (1999) 37, 179.
[48] Pettitt D., Arshad Z., Smith J., Stanic T., Holländer G., Brindley D., CAR-T Cells: A Systematic Review and Mixed Methods Analysis of the Clinical Trial Landscape. Mol. Ther., (2018) 26, 342.
[49] Ventola C. L., Cancer Immunotherapy, Part 2: Efficacy, Safety, and Other Clinical Considerations. P t, (2017) 42, 452.
[50] Chiang C. S., Lin Y. J., Lee R., Lai Y. H., Cheng H. W., Hsieh C. H., Shyu W. C., Chen S. Y., Combination of fucoidan-based magnetic nanoparticles and immunomodulators enhances tumour-localized immunotherapy. Nat. Nanotechnol., (2018) 13, 746.
[51] Nam J., Son S., Park K. S., Zou W. P., Shea L. D., Moon J. J., Cancer nanomedicine for combination cancer immunotherapy. Nat. Rev. Mater., (2019) 4, 398.
[52] Feng X., Ding W. Q., Ma J. H., Liu B. J., Yuan H. M., Targeted Therapies in Lung Cancers: Current Landscape and Future Prospects. Recent Pat. Anticancer Drug Discov., (2021) 16, 540.
[53] Amigorena S., Antigen presentation: from cell biology to physiology. Immunol. Rev., (2016) 272, 5.
[54] Couture A., Garnier A., Docagne F., Boyer O., Vivien D., Le-Mauff B., Latouche J.-B., Toutirais O., HLA-class II artificial antigen presenting cells in CD4+ T cell-based immunotherapy. Front. immunol., (2019) 10, 447508.
[55] Min Y., Roche K. C., Tian S., Eblan M. J., McKinnon K. P., Caster J. M., Chai S., Herring L. E., Zhang L., Zhang T., Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat. Nanotechnol., (2017) 12, 877.
[56] Est-Witte S. E., Livingston N. K., Omotoso M. O., Green J. J., Schneck J. P., Nanoparticles for generating antigen-specific T cells for immunotherapy. Semin. Immunol., (2021) 56.
[57] Casey M., Nakamura K., The Cancer-Immunity Cycle in Multiple Myeloma. Immunotargets Ther, (2021) 10, 247.
[58] Kumari S., Mak M., Poh Y. C., Tohme M., Watson N., Melo M., Janssen E., Dustin M., Geha R., Irvine D. J., Cytoskeletal tension actively sustains the migratory T-cell synaptic contact. Embo j, (2020) 39, e102783.
[59] Poorebrahim M., Abazari M. F., Sadeghi S., Mahmoudi R., Kheirollahi A., Askari H., Wickström S. L., Poortahmasebi V., Lundqvist A., Kiessling R., Cid-Arregui A., Genetically modified immune cells targeting tumor antigens. Pharmacol. Therapeut., (2020) 214, 107603.
[60] Wang D., Cui Q., Yang Y. J., Liu A. Q., Zhang G., Yu J. C., Application of dendritic cells in tumor immunotherapy and progress in the mechanism of anti-tumor effect of Astragalus polysaccharide (APS) modulating dendritic cells: a review. Biomed. Pharmacother., (2022) 155, 113541.
[61] Askew D., Harding C. V., Antigen processing and CD24 expression determine antigen presentation by splenic CD4+ and CD8+ dendritic cells. Immunology, (2008) 123, 447.
[62] Moussion C., Delamarre L., Antigen cross-presentation by dendritic cells: A critical axis in cancer immunotherapy. Semin. Immunol., (2024) 71.
[63] Steinman R. M., Banchereau J., Taking dendritic cells into medicine. Nature, (2007) 449, 419.
[64] Tong C., Liang Y., Han X., Zhang Z., Zheng X., Wang S., Song B., Research Progress of Dendritic Cell Surface Receptors and Targeting. Biomedicines, (2023) 11.
[65] Banchereau J., Steinman R. M., Dendritic cells and the control of immunity. Nature, (1998) 392, 245.
[66] Hu H., Xu Q., Mo Z. M., Hu X. X., He Q. Y., Zhang Z. J., Xu Z. S., New anti-cancer explorations based on metal ions. J. Nanobiotechnology., (2022) 20.
[67] Wang Y., Zhang L., Zhou F., Cuproptosis: a new form of programmed cell death. Cell. Mol. Immunol., (2022) 19, 867.
[68] Gromadzka G., Tarnacka B., Flaga A., Adamczyk A., Copper Dyshomeostasis in Neurodegenerative Diseases-Therapeutic Implications. Int J Mol Sci, (2020) 21.
[69] Tsvetkov P., Coy S., Petrova B., Dreishpoon M., Verma A., Abdusamad M., Rossen J., Joesch-Cohen L., Humeidi R., Spangler R. D., Copper induces cell death by targeting lipoylated TCA cycle proteins. Science, (2022) 375, 1254.
[70] Huang Y., Chen C., Tan H., Dong S., Ren Y., Chao M., Yan H., Yan X., Jiang G., Gao F., A Stimulus-Responsive Ternary Heterojunction Boosting Oxidative Stress, Cuproptosis for Melanoma Therapy. Small, n/a, 2401147.
[71] Tarin M., Babaie M., Eshghi H., Matin M. M., Saljooghi A. S., Elesclomol, a copper-transporting therapeutic agent targeting mitochondria: from discovery to its novel applications. J Transl Med, (2023) 21, 745.
[72] Gohil V. M., Repurposing elesclomol, an investigational drug for the treatment of copper metabolism disorders. Expert. Opin. Investig. Drugs, (2021) 30, 1.
[73] Nagai M., Vo N. H., Ogawa L. S., Chimmanamada D., Inoue T., Chu J., Beaudette-Zlatanova B. C., Lu R. Z., Blackman R. K., Barsoum J., Koya K., Wada Y., The oncology drug elesclomol selectively transports copper to the mitochondria to induce oxidative stress in cancer cells. Free Radic. Biol. Med., (2012) 52, 2142.
[74] Tsvetkov P., Coy S., Petrova B., Dreishpoon M., Verma A., Abdusamad M., Rossen J., Joesch-Cohen L., Humeidi R., Spangler R. D., Eaton J. K., Frenkel E., Kocak M., Corsello S. M., Lutsenko S., Kanarek N., Santagata S., Golub T. R., Copper induces cell death by targeting lipoylated TCA cycle proteins. Science, (2022) 375, 1254.
[75] Zheng P., Zhou C., Lu L., Liu B., Ding Y., Elesclomol: a copper ionophore targeting mitochondrial metabolism for cancer therapy. J Exp Clin Cancer Res, (2022) 41, 271.
[76] Hu Y., Zhang K., Zhu X., Zheng X., Wang C., Niu X., Jiang T., Ji X., Zhao W., Pang L., Qi Y., Li F., Li L., Xu Z., Gu W., Zou H., Synergistic Inhibition of Drug-Resistant Colon Cancer Growth with PI3K/mTOR Dual Inhibitor BEZ235 and Nano-Emulsioned Paclitaxel via Reducing Multidrug Resistance and Promoting Apoptosis. Int J Nanomedicine, (2021) 16, 2173.
[77] Harkness J. M., In Appreciation¶A Lifetime of Connections: Otto Herbert Schmitt, 1913 - 1998. Phys. Perspect., (2002) 4, 456.
[78] Noh I., in Biomimetic Medical Materials: From Nanotechnology to 3d Bioprinting, Vol. 1064 (Ed: I. Noh) 2018, p. V.
[79] Beh C. Y., Prajnamitra R. P., Chen L. L., Hsieh P. C., Advances in Biomimetic Nanoparticles for Targeted Cancer Therapy and Diagnosis. Molecules, (2021) 26.
[80] Deng X. R., Dai Y. L., Liu J. H., Zhou Y., Ma P. A., Cheng Z. Y., Chen Y. Y., Deng K. R., Li X. J., Hou Z. Y., Li C. X., Lin J., Multifunctional hollow CaF2:poly(2-Aminoethyl methacrylate) microspheres for Pt(IV) pro-drug delivery and tri-modal imaging. Biomaterials, (2015) 50, 154.
[81] Zhang G. L., Gao J. L., Qian J. C., Cai D. Q., Zheng K., Yu Z. W., Wang J. F., Zhong K., Zhang X., Wu Z. Y., A Multifunctional Magnetic Composite Material as a Drug Delivery System and a Magnetic Resonance Contrast Agent. Part. Part. Syst. Charact., (2014) 31, 976.
[82] Tang S., Meng Q., Sun H., Su J., Yin Q., Zhang Z., Yu H., Chen L., Chen Y., Gu W., Li Y., Tumor-Microenvironment-Adaptive Nanoparticles Codeliver Paclitaxel and siRNA to Inhibit Growth and Lung Metastasis of Breast Cancer. Adv. Funct. Mater., (2016) 26, 6033.
[83] Yan L., Amirshaghaghi A., Huang D., Miller J., Stein J. M., Busch T. M., Cheng Z., Tsourkas A., Protoporphyrin IX (PpIX)-Coated Superparamagnetic Iron Oxide Nanoparticle (SPION) Nanoclusters for Magnetic Resonance Imaging and Photodynamic Therapy. Adv. Funct. Mater., (2018) 28, 1707030.
[84] Afsharzadeh M., Hashemi M., Mokhtarzadeh A., Abnous K., Ramezani M., Recent advances in co-delivery systems based on polymeric nanoparticle for cancer treatment. Artif. Cells Nanomed. Biotechnol., (2018) 46, 1095.
[85] Liu X. S., Li H., Chen Y. J., Jin Q., Ren K. F., Ji J., Mixed-Charge Nanoparticles for Long Circulation, Low Reticuloendothelial System Clearance, and High Tumor Accumulation. Adv. Healthc. Mater., (2014) 3, 1439.
[86] Lima A. C., Ferreira H., Reis R. L., Neves N. M., Biodegradable polymers: an update on drug delivery in bone and cartilage diseases. Expert Opin. Drug Deliv., (2019) 16, 795.
[87] Tang L., He S., Yin Y., Liu H., Hu J., Cheng J., Wang W., Combination of Nanomaterials in Cell-Based Drug Delivery Systems for Cancer Treatment. Pharmaceutics, (2021) 13.
[88] Li S. J., Chen L., Wang G. K., Xu L. X., Hou S. S., Chen Z. W., Xu X. L., Wang X. J., Liu F. H., Du Y. Z., Anti-ICAM-1 antibody-modified nanostructured lipid carriers: a pulmonary vascular endothelium-targeted device for acute lung injury therapy. J. Nanobiotechnology., (2018) 16.
[89] Courrier H. M., Butz N., Vandamme T. F., Pulmonary drug delivery systems: Recent developments and prospects. Crit. Rev. Ther. Drug. Carrier Syst., (2002) 19, 425.
[90] Fadilah N. I. M., Isa I. L. M., Zaman W., Tabata Y., Fauzi M. B., The Effect of Nanoparticle-Incorporated Natural-Based Biomaterials towards Cells on Activated Pathways: A Systematic Review. Polymers (Basel), (2022) 14.
[91] Li C. W., Qian J. W., Chu Y. W., Advances in Brain Delivery Systems Based on Biomimetic Nanoparticles. Chemnanomat, (2022) 8.
[92] Mohammad Rafiei F., Khojini J. Y., Ghazvinian F., Alimardan S., Norioun H., Tahershamsi Z., Tajbakhsh A., Gheibihayat S. M., Cell membrane biomimetic nanoparticles in drug delivery. Biotechnol. Appl. Biochem., (2023) 70, 1843.
[93] Chugh V., Vijaya Krishna K., Pandit A., Cell Membrane-Coated Mimics: A Methodological Approach for Fabrication, Characterization for Therapeutic Applications, and Challenges for Clinical Translation. ACS Nano, (2021) 15, 17080.
[94] Powsner E. H., Harris J. C., Day E. S., Biomimetic Nanoparticles for the Treatment of Hematologic Malignancies. Adv Nanobiomed Res, (2021) 1, 2000047.
[95] Zhang G., Du R., Zhang L., Cai D., Sun X., Zhou Y., Zhou J., Qian J., Zhong K., Zheng K., Kaigler D., Liu W., Zhang X., Zou D., Wu Z., Gadolinium-Doped Iron Oxide Nanoprobe as Multifunctional Bioimaging Agent and Drug Delivery System. Adv. Funct. Mater., (2015) 25, 6101.
[96] Yue Z. G., Wei W., You Z. X., Yang Q. Z., Yue H., Su Z. G., Ma G. H., Iron Oxide Nanotubes for Magnetically Guided Delivery and pH-Activated Release of Insoluble Anticancer Drugs. Adv. Funct. Mater., (2011) 21, 3446.
[97] Yang S. J., Huang C. H., Wang C. H., Shieh M. J., Chen K. C., The Synergistic Effect of Hyperthermia and Chemotherapy in Magnetite Nanomedicine-Based Lung Cancer Treatment. Int J Nanomedicine, (2020) 15, 10331.
[98] Laurent S., Forge D., Port M., Roch A., Robic C., Vander Elst L., Muller R. N., Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev., (2008) 108, 2064.
[99] Zhang Y., Xu Y. J., Sun D., Meng Z. Y., Ying W. W., Gao W., Hou R., Zheng Y. Y., Cai X. J., Hu B., Lin X. F., Hollow magnetic nanosystem-boosting synergistic effect between magnetic hyperthermia and sonodynamic therapy via modulating reactive oxygen species and heat shock proteins. Chem. Eng. J., (2020) 390.
[100] Bobo D., Robinson K. J., Islam J., Thurecht K. J., Corrie S. R., Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date. Pharm Res, (2016) 33, 2373.
[101] Patra J. K., Das G., Fraceto L. F., Campos E. V. R., Rodriguez-Torres M. d. P., Acosta-Torres L. S., Diaz-Torres L. A., Grillo R., Swamy M. K., Sharma S., Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology., (2018) 16, 1.
[102] Prajapati S., Hinchliffe T., Roy V., Shah N., Jones C. N., Obaid G., Biomimetic Nanotechnology: A Natural Path Forward for Tumor-Selective and Tumor-Specific NIR Activable Photonanomedicines. Pharmaceutics, (2021) 13.
[103] Meng Y. Q., Shi Y. N., Zhu Y. P., Liu Y. Q., Gu L. W., Liu D. D., Ma A., Xia F., Guo Q. Y., Xu C. C., Recent trends in preparation and biomedical applications of iron oxide nanoparticles. J. Nanobiotechnology., (2024) 22, 24.
[104] Majumder J., Taratula O., Minko T., Nanocarrier-based systems for targeted and site specific therapeutic delivery. Adv. Drug Deliv. Rev., (2019) 144, 57.
[105] Zhang J., Saltzman M., Engineering biodegradable nanoparticles for drug and gene delivery. Chem Eng Prog, (2013) 109, 25.
[106] Ding M., Song N., He X., Li J., Zhou L., Tan H., Fu Q., Gu Q., Toward the Next-Generation Nanomedicines: Design of Multifunctional Multiblock Polyurethanes for Effective Cancer Treatment. ACS Nano, (2013) 7, 1918.
[107] Xia Q., Zhang Y., Li Z., Hou X., Feng N., Red blood cell membrane-camouflaged nanoparticles: a novel drug delivery system for antitumor application. Acta Pharm. Sin. B., (2019) 9, 675.
[108] Jin Q., Chen Y., Wang Y., Ji J., Zwitterionic drug nanocarriers: A biomimetic strategy for drug delivery. Colloids Surf. B., (2014) 124, 80.
[109] Liu G., Zhuang W., Chen X., Yin A., Nie Y., Wang Y., Drug carrier system self-assembled from biomimetic polyphosphorycholine and biodegradable polypeptide based diblock copolymers. Polymer, (2016) 100, 45.
[110] Gaberc-Porekar V., Zore I., Podobnik B., Menart V., Obstacles and pitfalls in the PEGylation of therapeutic proteins. Curr Opin Drug Discov Devel, (2008) 11, 242.
[111] Nakabayashi N., Iwasaki Y., Copolymers of 2-methacryloyloxyethyl phosphorylcholine (MPC) as biomaterials. Bio-Med. Mater. Eng., (2004) 14, 345.
[112] Fam S. Y., Chee C. F., Yong C. Y., Ho K. L., Mariatulqabtiah A. R., Tan W. S., Stealth coating of nanoparticles in drug-delivery systems. Nanomaterials, (2020) 10, 787.
[113] Yuan Y.-Y., Mao C.-Q., Du X.-J., Du J.-Z., Wang F., Wang J., Surface Charge Switchable Nanoparticles Based on Zwitterionic Polymer for Enhanced Drug Delivery to Tumor. Adv. Mater., (2012) 24, 5476.
[114] Liu X. S., Jin Q., Ji Y., Ji J., Minimizing nonspecific phagocytic uptake of biocompatible gold nanoparticles with mixed charged zwitterionic surface modification. J. Mater. Chem., (2012) 22, 1916.
[115] Immordino M. L., Dosio F., Cattel L., Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine, (2006) 1, 297.
[116] Santos M. A., Irto A., Buglyó P., Chaves S., Hydroxypyridinone-Based Metal Chelators towards Ecotoxicity: Remediation and Biological Mechanisms. Molecules, (2022) 27, 1966.
[117] Avdeef A., Sofen S. R., Bregante T. L., Raymond K. N., Coordination chemistry of microbial iron transport compounds. 9. Stability constants for catechol models of enterobactin. J. Am. Chem. Soc., (1978) 100, 5362.
[118] Datta A., Raymond K. N., Gd− hydroxypyridinone (HOPO)-based high-relaxivity magnetic resonance imaging (MRI) contrast agents. Acc. Chem. Res., (2009) 42, 938.
[119] Zhou X., Dong L., Shen L., Hydroxypyridinones as a Very Promising Platform for Targeted Diagnostic and Therapeutic Radiopharmaceuticals. Molecules, (2021) 26.
[120] Sharma S., Baral M., Kanungo B. K., Recent advances in therapeutical applications of the versatile hydroxypyridinone chelators. J. Incl. Phenom. Macrocycl. Chem., (2022) 102, 169.
[121] Bonvin D., Bastiaansen J. A. M., Stuber M., Hofmann H., Ebersold M. M., Chelating agents as coating molecules for iron oxide nanoparticles. RSC Adv., (2017) 7, 55598.
[122] Yi G. Y., Kim M. J., Kim H. I., Park J., Baek S. H., Hyperthermia Treatment as a Promising Anti-Cancer Strategy: Therapeutic Targets, Perspective Mechanisms and Synergistic Combinations in Experimental Approaches. Antioxidants (Basel), (2022) 11.
[123] Ali A., Shah T., Ullah R., Zhou P. F., Guo M. L., Ovais M., Tan Z. Q., Rui Y. K., Review on Recent Progress in Magnetic Nanoparticles: Synthesis, Characterization, and Diverse Applications. Front. Chem., (2021) 9.
[124] Sengedorj A., Hader M., Heger L., Frey B., Dudziak D., Fietkau R., Ott O. J., Scheidegger S., Barba S. M., Gaipl U. S., Rückert M., The Effect of Hyperthermia and Radiotherapy Sequence on Cancer Cell Death and the Immune Phenotype of Breast Cancer Cells. Cancers, (2022) 14, 2050.
[125] Chen B.-W., Hatamie S., Chiu H.-C., Wei Z.-H., Hu S.-H., Yao D.-J., Shape-Mediated Magnetocrystalline Anisotropy and Relaxation Controls by Cobalt Ferrite Core–Shell Heterostructures for Magnetothermal Penetration Delivery. Advanced Materials Interfaces, (2022) 9, 2200022.
[126] Qu Y., Zhang Y., Yu Q., Chen H., Surface-Mediated Intracellular Delivery by Physical Membrane Disruption. CS Appl. Mater. Interfaces., (2020) 12, 31054.
[127] June C. H., O'Connor R. S., Kawalekar O. U., Ghassemi S., Milone M. C., CAR T cell immunotherapy for human cancer. Science, (2018) 359, 1361.
[128] Zhang Y., Røise J. J., Lee K., Li J., Murthy N., Recent developments in intracellular protein delivery. Curr. Opin. Biotechnol., (2018) 52, 25.
[129] Stewart M. P., Langer R., Jensen K. F., Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem. Rev., (2018) 118, 7409.
[130] Stewart M. P., Sharei A., Ding X., Sahay G., Langer R., Jensen K. F., In vitro and ex vivo strategies for intracellular delivery. Nature, (2016) 538, 183.
[131] Van Hoeck J., Van de Vyver T., Harizaj A., Goetgeluk G., Merckx P., Liu J., Wels M., Sauvage F., De Keersmaecker H., Vanhove C., de Jong O. G., Vader P., Dewitte H., Vandekerckhove B., Braeckmans K., De Smedt S. C., Raemdonck K., Hydrogel-Induced Cell Membrane Disruptions Enable Direct Cytosolic Delivery of Membrane-Impermeable Cargo. Adv. Mater., (2021) 33, 2008054.
[132] Makabenta J. M. V., Nabawy A., Li C. H., Schmidt-Malan S., Patel R., Rotello V. M., Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat Rev Microbiol, (2021) 19, 23.
[133] Gupta P., Kar S., Kumar A., Tseng F. G., Pradhan S., Mahapatra P. S., Santra T. S., Pulsed laser assisted high-throughput intracellular delivery in hanging drop based three dimensional cancer spheroids. Analyst, (2021) 146, 4756.
[134] Anestopoulos I., Kiousi D. E., Klavaris A., Galanis A., Salek K., Euston S. R., Pappa A., Panayiotidis M. I., Surface Active Agents and Their Health-Promoting Properties: Molecules of Multifunctional Significance. Pharmaceutics, (2020) 12.
[135] Aggarwal V., Tuli H. S., Varol A., Thakral F., Yerer M. B., Sak K., Varol M., Jain A., Khan M. A., Sethi G., Role of Reactive Oxygen Species in Cancer Progression: Molecular Mechanisms and Recent Advancements. Biomolecules, (2019) 9, 735.
[136] Gerschman R., Gilbert D., Nye S., Dwyer P., Fenn W., Oxygen poisoning and X-irradiation: a mechanism in common. 1954. Nutrition, (2001) 17, 162.
[137] Harman D., Aging: A Theory Based on Free Radical and Radiation Chemistry. J. Gerontol., (1956) 11, 298.
[138] ArulJothi K., Kumaran K., Senthil S., Nidhu A., Munaff N., Janitri V., Kirubakaran R., Singh S. K., Gupt G., Dua K., Implications of reactive oxygen species in lung cancer and exploiting it for therapeutic interventions. Medical Oncology, (2022) 40, 43.
[139] Wenceslau C. F., McCarthy C. G., Szasz T., Spitler K., Goulopoulou S., Webb R. C., Disease W. G. o. D. i. C., Mitochondrial damage-associated molecular patterns and vascular function. Eur. Heart J., (2014) 35, 1172.
[140] Akram M., Alternative Medicine: Update, BoD–Books on Demand, 2021.
[141] Chenthamara D., Subramaniam S., Ramakrishnan S. G., Krishnaswamy S., Essa M. M., Lin F.-H., Qoronfleh M. W., Therapeutic efficacy of nanoparticles and routes of administration. Biomater. Res., (2019) 23, 20.
[142] Choi A., Javius-Jones K., Hong S., Park H., Cell-based drug delivery systems with innate homing capability as a novel nanocarrier platform. Int. J. Nanomedicine, (2023) 509.
[143] Li Z., Wang Y., Ding Y., Repp L., Kwon G. S., Hu Q., Cell-Based Delivery Systems: Emerging Carriers for Immunotherapy. Adv. Funct. Mater., (2021) 31, 2100088.
[144] Gonzalez H., Hagerling C., Werb Z., Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev., (2018) 32, 1267.
[145] Zhang Q. Z., Honko A., Zhou J. R., Gong H., Downs S. N., Vasquez J. H., Fang R. H., Gao W. W., Griffiths A., Zhang L. F., Cellular Nanosponges Inhibit SARS-CoV-2 Infectivity. Nano Lett., (2020) 20, 5570.
[146] Khalil D. N., Smith E. L., Brentjens R. J., Wolchok J. D., The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat. Rev. Clin. Oncol, (2016) 13, 273.
[147] Harayama T., Riezman H., Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol., (2018) 19, 281.
[148] Thomsen T., Klok H.-A., Chemical cell surface modification and analysis of nanoparticle-modified living cells. ACS Appl. Bio Mater., (2021) 4, 2293.
[149] Pan C., Li J., Hou W., Lin S., Wang L., Pang Y., Wang Y., Liu J., Polymerization-Mediated Multifunctionalization of Living Cells for Enhanced Cell-Based Therapy. Adv. Mater., (2021) 33, 2007379.
[150] Sun X., Han X., Xu L., Gao M., Xu J., Yang R., Liu Z., Surface‐engineering of red blood cells as artificial antigen presenting cells promising for cancer immunotherapy. Small, (2017) 13, 1701864.
[151] Stephan M. T., Moon J. J., Um S. H., Bershteyn A., Irvine D. J., Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat. Med., (2010) 16, 1035.
[152] Luo G. F., Chen W. H., Zeng X., Zhang X. Z., Cell primitive-based biomimetic functional materials for enhanced cancer therapy. Chem. Soc. Rev., (2021) 50, 945.
[153] Saxon E., Bertozzi C. R., Cell surface engineering by a modified Staudinger reaction. Science, (2000) 287, 2007.
[154] Li P. Y., Fan Z., Cheng H., Cell Membrane Bioconjugation and Membrane-Derived Nanomaterials for Immunotherapy. Bioconjug Chem, (2018) 29, 624.
[155] Yang S. H., Lee K. B., Kong B., Kim J. H., Kim H. S., Choi I. S., Biomimetic encapsulation of individual cells with silica. Angew. Chem., Int. Ed. Engl., (2009) 48, 9160.
[156] Oyane A., Wang X., Sogo Y., Ito A., Tsurushima H., Calcium phosphate composite layers for surface-mediated gene transfer. Acta Biomater., (2012) 8, 2034.
[157] Huang L.-L., Nie W., Zhang J., Xie H.-Y., Cell-membrane-based biomimetic systems with bioorthogonal functionalities. Acc. Chem. Res., (2020) 53, 276.
[158] Zhen X., Cheng P., Pu K., Recent advances in cell membrane–camouflaged nanoparticles for cancer phototherapy. Small, (2019) 15, 1804105.
[159] Kroll A. V., Fang R. H., Zhang L., Biointerfacing and applications of cell membrane-coated nanoparticles. Bioconjug. Chem., (2017) 28, 23.
[160] Fang R. H., Kroll A. V., Gao W., Zhang L., Cell membrane coating nanotechnology. Adv. Mater., (2018) 30, 1706759.
[161] Yan H., Shao D., Lao Y. H., Li M., Hu H., Leong K. W., Engineering cell membrane‐based nanotherapeutics to target inflammation. Adv. Sci., (2019) 6, 1900605.
[162] Xia C., Bai W., Deng T., Li T., Zhang L., Zhang Z., Li M., He Q., Sponge-like nano-system suppresses tumor recurrence and metastasis by restraining myeloid-derived suppressor cells-mediated immunosuppression and formation of pre-metastatic niche. Acta Biomater., (2023) 158, 708.
[163] Shang L., Jiang X., Yang T., Xu H., Xie Q., Hu M., Yang C., Kong L., Zhang Z., Enhancing cancer chemo-immunotherapy by biomimetic nanogel with tumor targeting capacity and rapid drug-releasing in tumor microenvironment. Acta Pharm. Sin. B., (2022) 12, 2550.
[164] Batrakova E. V., Gendelman H. E., Kabanov A. V., Cell-mediated drug delivery. Expert Opin. Drug Deliv., (2011) 8, 415.
[165] Huang T., Wang G., Shahbazi M.-A., Bai Y., Zhang J., Feng G., Asadian E., Ghorbani-Bidkorpeh F., Yang Z., Li Y., Huo Q., Liu Y., Liu D., Surface Decoration of Peptide Nanoparticles Enables Efficient Therapy toward Osteoporosis and Diabetes. Adv. Funct. Mater., (2023) 33, 2210627.
[166] Enlow E. M., Luft J. C., Napier M. E., DeSimone J. M., Potent Engineered PLGA Nanoparticles by Virtue of Exceptionally High Chemotherapeutic Loadings. Nano Lett., (2011) 11, 808.
[167] Li W., Lei X., Feng H., Li B., Kong J., Xing M., Layer-by-Layer Cell Encapsulation for Drug Delivery: The History, Technique Basis, and Applications. Pharmaceutics, (2022) 14.
[168] Millán C. G., Marinero M. L. S., Castañeda A. Z., Lanao J. M., Drug, enzyme and peptide delivery using erythrocytes as carriers. J. Control. Release, (2004) 95, 27.
[169] Zhang W., Wang M., Tang W., Wen R., Zhou S., Lee C., Wang H., Jiang W., Delahunty I. M., Zhen Z., Nanoparticle‐laden macrophages for tumor‐tropic drug delivery. Adv. Mater., (2018) 30, 1805557.
[170] Agrahari V., Agrahari V., Mitra A. K., Next generation drug delivery: circulatory cells-mediated nanotherapeutic approaches. Expert Opin. Drug Deliv., (2017) 14, 285.
[171] Antonelli A., Sfara C., Manuali E., Bruce I. J., Magnani M., Encapsulation of superparamagnetic nanoparticles into red blood cells as new carriers of MRI contrast agents. Nanomedicine, (2011) 6, 211.
[172] Wang C., Sun X., Cheng L., Yin S., Yang G., Li Y., Liu Z., Multifunctional theranostic red blood cells for magnetic‐field‐enhanced in vivo combination therapy of cancer. Adv. Mater., (2014) 26, 4794.
[173] Rao L., Bu L. L., Ma L., Wang W., Liu H., Wan D., Liu J. F., Li A., Guo S. S., Zhang L., Platelet‐facilitated photothermal therapy of head and neck squamous cell carcinoma. Angew. Chem., (2018) 130, 998.
[174] Wu X., Zhang X., Feng W., Feng H., Ding Z., Zhao Q., Li X., Tang N., Zhang P., Li J., Wang J., A Targeted Erythrocyte Membrane-Encapsulated Drug-Delivery System with Anti-osteosarcoma and Anti-osteolytic Effects. CS Appl. Mater. Interfaces., (2021) 13, 27920.
[175] Hu C. M., Fang R. H., Zhang L., Erythrocyte-inspired delivery systems. Adv Healthc Mater, (2012) 1, 537.
[176] Bhateria M., Rachumallu R., Singh R., Bhatta R. S., Erythrocytes-based synthetic delivery systems: transition from conventional to novel engineering strategies. Expert Opin Drug Deliv, (2014) 11, 1219.
[177] Brähler M., Georgieva R., Buske N., Müller A., Müller S., Pinkernelle J., Teichgräber U., Voigt A., Bäumler H., Magnetite-loaded carrier erythrocytes as contrast agents for magnetic resonance imaging. Nano Lett, (2006) 6, 2505.
[178] Kontos S., Kourtis I. C., Dane K. Y., Hubbell J. A., Engineering antigens for in situ erythrocyte binding induces T-cell deletion. Proc Natl Acad Sci U S A, (2013) 110, E60.
[179] Phua K. K., Boczkowski D., Dannull J., Pruitt S., Leong K. W., Nair S. K., Whole blood cells loaded with messenger RNA as an anti-tumor vaccine. Adv Healthc Mater, (2014) 3, 837.
[180] Glassman P. M., Villa C. H., Ukidve A., Zhao Z., Smith P., Mitragotri S., Russell A. J., Brenner J. S., Muzykantov V. R., Vascular drug delivery using carrier red blood cells: focus on RBC surface loading and pharmacokinetics. Pharmaceutics, (2020) 12, 440.
[181] Alvey C., Discher D. E., Engineering macrophages to eat cancer: from "marker of self" CD47 and phagocytosis to differentiation. J Leukoc Biol, (2017) 102, 31.
[182] Hu C.-M. J., Zhang L., Aryal S., Cheung C., Fang R. H., Zhang L., Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. U.S.A., (2011) 108, 10980.
[183] Wang Y., Sun S. K., Liu Y., Zhang Z., Advanced hitchhiking nanomaterials for biomedical applications. Theranostics, (2023) 13, 4781.
[184] Adebowale K., Liao R., Suja V. C., Kapate N., Lu A., Gao Y., Mitragotri S., Materials for Cell Surface Engineering. Adv. Mater., n/a, 2210059.
[185] Lenders V., Escudero R., Koutsoumpou X., Armengol Álvarez L., Rozenski J., Soenen S. J., Zhao Z., Mitragotri S., Baatsen P., Allegaert K., Toelen J., Manshian B. B., Modularity of RBC hitchhiking with polymeric nanoparticles: testing the limits of non-covalent adsorption. J Nanobiotechnology, (2022) 20, 333.
[186] Wadhwa R., Aggarwal T., Thapliyal N., Kumar A., Yadav P., Kumari V., Reddy B. S. C., Chandra P., Maurya P. K., Red blood cells as an efficient in vitro model for evaluating the efficacy of metallic nanoparticles. 3 Biotech, (2019) 9, 1.
[187] Zhao Z., Kim J., Suja V. C., Kapate N., Gao Y., Guo J., Muzykantov V. R., Mitragotri S., Red Blood Cell Anchoring Enables Targeted Transduction and Re-Administration of AAV-Mediated Gene Therapy. Adv. Sci., (2022) 9, 2201293.
[188] Anselmo A. C., Kumar S., Gupta V., Pearce A. M., Ragusa A., Muzykantov V., Mitragotri S., Exploiting shape, cellular-hitchhiking and antibodies to target nanoparticles to lung endothelium: Synergy between physical, chemical and biological approaches. Biomaterials, (2015) 68, 1.
[189] Zelepukin I., Yaremenko A., Shipunova V., Babenyshev A., Balalaeva I., Nikitin P., Deyev S., Nikitin M., Nanoparticle-based drug delivery via RBC-hitchhiking for the inhibition of lung metastases growth. Nanoscale, (2019) 11, 1636.
[190] Huynh T. M. H., Luc V. S., Chiang M. R., Weng W. H., Chang C. W., Chiang W. H., Liu Y. C., Chuang C. Y., Chang C. C., Hu S. H., Programmed Lung Metastasis Immunotherapy via Cascade‐Responsive Cell Membrane‐Mimetic Copolymer‐Wrapped Nanoraspberry‐Mediated Elesclomol‐Copper Delivery. Adv. Funct. Mater., (2024) 2401806.
[191] Murciano Goroff Y. R., Warner A. B., Wolchok J. D., The future of cancer immunotherapy: microenvironment-targeting combinations. Cell Res., (2020) 30, 507.
[192] Neophytou C. M., Panagi M., Stylianopoulos T., Papageorgis P., The role of tumor microenvironment in cancer metastasis: Molecular mechanisms and therapeutic opportunities. Cancers, (2021) 13, 2053.
[193] Yalamandala B. N., Huynh T. M. H., Chiang M. R., Weng W. H., Chang C. W., Chiang W. H., Hu S. H., Programmed catalytic therapy and antigen capture‐mediated dendritic cells harnessing cancer immunotherapies by in situ‐forming nanoreservoirs. Adv. Funct. Mater., (2023) 2210644.
[194] Shen W. T., Hsu R. S., Fang J. H., Hu P. F., Chiang C. S., Hu S. H., Marginative delivery-mediated extracellular leakiness and T cell infiltration in lung metastasis by a biomimetic nanoraspberry. Nano Lett., (2020) 21, 1375.
[195] Zhang Y., Wang F., Ju E., Liu Z., Chen Z., Ren J., Qu X., Metal‐organic‐framework‐based vaccine platforms for enhanced systemic immune and memory response. Adv. Funct. Mater., (2016) 26, 6454.
[196] Chiang M. R., Su Y. L., Chang C. Y., Chang C. W., Hu S. H., Lung metastasis-targeted donut-shaped nanostructures shuttled by the margination effect for the PolyDox generation-mediated penetrative delivery into deep tumors. Mater. Horiz., (2020) 7, 1051.
[197] Jiang Y., Krishnan N., Zhou J., Chekuri S., Wei X., Kroll A. V., Yu C. L., Duan Y., Gao W., Fang R. H., Engineered Cell‐Membrane‐Coated Nanoparticles Directly Present Tumor Antigens to Promote Anticancer Immunity. Adv. Mater., (2020) 32, 2001808.
[198] Wang X., Chen D., Huang K., Li M., Zhan C., Dong Z., Deng T., Ren K., Qiu Y., Zhang Z., Albumin‐hitchhiking drug delivery to tumor‐draining lymph nodes precisely boosts tumor‐specific immunity through autophagy modulation of immune cells. Adv. Mater., (2023) 2211055.
[199] Li Q., Liu X., Yan C., Zhao B., Zhao Y., Yang L., Shi M., Yu H., Li X., Luo K., Polysaccharide‐Based Stimulus‐Responsive Nanomedicines for Combination Cancer Immunotherapy. Small, (2023) 2206211.
[200] Hawley J. E., Obradovic A. Z., Dallos M. C., Lim E. A., Runcie K., Ager C. R., McKiernan J., Anderson C. B., Decastro G. J., Weintraub J., Anti-PD-1 immunotherapy with androgen deprivation therapy induces robust immune infiltration in metastatic castration-sensitive prostate cancer. Cancer Cell, (2023) 41, 1972.
[201] Huang J., Yang B., Peng Y., Huang J., Wong S. H. D., Bian L., Zhu K., Shuai X., Han S., Nanomedicine‐boosting tumor immunogenicity for enhanced immunotherapy. Adv. Funct. Mater., (2021) 31, 2011171.
[202] Wang J., Wang J., Xu J., Hou T., Yin L., Chen H., Ma Y., Chen W., Wang Z., Hou Y., Anchoring a xenogeneic antigen‐guided immune activation system to tumor cell membrane for solid tumor treatment. Adv. Funct. Mater., (2022) 32, 2111499.
[203] Li Q., Liu Y., Zhang Y., Jiang W., Immunogenicity-boosted cancer immunotherapy based on nanoscale metal-organic frameworks. J. Control. Release., (2022) 347, 183.
[204] Xu W., Qian J., Hou G., Wang T., Wang J., Wang Y., Yang L., Cui X., Suo A., A hollow amorphous bimetal organic framework for synergistic cuproptosis/ferroptosis/apoptosis anticancer therapy via disrupting intracellular redox homeostasis and copper/iron metabolisms. Adv. Funct. Mater., (2022) 32, 2205013.
[205] Zheng J., Ge H., Guo M., Zhang T., Hu Q., Yao Q., Long S., Sun W., Fan J., Du J., Peng X., Photoinduced cuproptosis with tumor-specific for metastasis-inhibited cancer therapy. Small, (2023) n/a, 2304407.
[206] Li Y., Yang J., Zhang Q., Xu S., Sun W., Ge S., Xu X., Jager M. J., Jia R., Zhang J., Fan X., Copper ionophore elesclomol selectively targets GNAQ/11-mutant uveal melanoma. Oncogene, (2022) 41, 3539.
[207] Yang L., Yang P., Lip G. Y. H., Ren J., Copper homeostasis and cuproptosis in cardiovascular disease therapeutics. Trends Pharmacol. Sci., (2023) 44, 573.
[208] Li S. R., Bu L. L., Cai L., Cuproptosis: lipoylated TCA cycle proteins-mediated novel cell death pathway. Signal Transduct. Target. Ther., (2022) 7, 158.
[209] Oliveri V., Biomedical applications of copper ionophores. Coord. Chem. Rev., (2020) 422, 213474.
[210] Nagai M., Vo N. H., Ogawa L. S., Chimmanamada D., Inoue T., Chu J., Beaudette Zlatanova B. C., Lu R., Blackman R. K., Barsoum J., The oncology drug elesclomol selectively transports copper to the mitochondria to induce oxidative stress in cancer cells. Free Radic. Biol. Med., (2012) 52, 2142.
[211] Guo B., Yang F., Zhang L., Zhao Q., Wang W., Yin L., Chen D., Wang M., Han S., Xiao H., Cuproptosis Induced by ROS Responsive Nanoparticles with Elesclomol and Copper Combined with αPD‐L1 for Enhanced Cancer Immunotherapy. Adv. Mater., (2023) 35, 2212267.
[212] Espinosa A., Kolosnjaj Tabi J., Abou Hassan A., Plan Sangnier A., Curcio A., Silva A. K., Di Corato R., Neveu S., Pellegrino T., Liz Marzán L. M., Magnetic (hyper) thermia or photothermia? Progressive comparison of iron oxide and gold nanoparticles heating in water, in cells, and in vivo. Adv. Funct. Mater., (2018) 28, 1803660.
[213] Chang M., Hou Z., Wang M., Li C., Lin J., Recent advances in hyperthermia therapy‐based synergistic immunotherapy. Adv. Mater., (2021) 33, 2004788.
[214] Werthmöller N., Frey B., Rückert M., Lotter M., Fietkau R., Gaipl U. S., Combination of ionising radiation with hyperthermia increases the immunogenic potential of B16-F10 melanoma cells in vitro and in vivo. Int. J. Hyperthermia., (2016) 32, 23.
[215] Li B., Hao G., Sun B., Gu Z., Xu Z. P., Engineering a therapy‐induced “immunogenic cancer cell death” amplifier to boost systemic tumor elimination. Adv. Funct. Mater., (2020) 30, 1909745.
[216] Boyer C., Whittaker M. R., Bulmus V., Liu J., Davis T. P., The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications. NPG Asia Mater., (2010) 2, 23.
[217] Arami H., Khandhar A., Liggitt D., Krishnan K. M., In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem. Soc. Rev., (2015) 44, 8576.
[218] Jiang C., Li X., Pan F., Zhang L., Yu H., Zhang J., Zou J., Zhong T., Zhang D., Yang Y., Ferroptosis and Pyroptosis Co‐Activated Nanomodulator for “Cold” Tumor Immunotherapy and Lung Metastasis Inhibition. Adv. Funct. Mater., (2023) 2211698.
[219] Takahashi H., Yumoto K., Yasuhara K., Nadres E. T., Kikuchi Y., Buttitta L., Taichman R. S., Kuroda K., Anticancer polymers designed for killing dormant prostate cancer cells. Sci. Rep., (2019) 9, 1096.
[220] Zhang L., Sun J., Huang W., Zhang S., Deng X., Gao W., Hypoxia-Triggered Bioreduction of Poly (N-oxide)–Drug Conjugates Enhances Tumor Penetration and Antitumor Efficacy. J. Am. Chem. Soc., (2023) 145, 1707.
[221] Hsieh M. H., Wang T. H., Hu S. H., Hsu T. C., Yow J. L., Tzang B. S., Chiang W. H., Tumor site-specific PEG detachment and active tumor homing of therapeutic PEGylated chitosan/folate-decorated polydopamine nanoparticles to augment antitumor efficacy of photothermal/chemo combination therapy. Chem. Eng. J., (2022) 446, 137243.
[222] Kong X. B., Tang Q. Y., Chen X. Y., Tu Y., Sun S. Z., Sun Z. L., Polyethylene glycol as a promising synthetic material for repair of spinal cord injury. Neural Regen. Res., (2017) 12, 1003.
[223] Karabasz A., Szczepanowicz K., Cierniak A., Mezyk-Kopec R., Dyduch G., Szczęch M., Bereta J., Bzowska M., In vivo studies on pharmacokinetics, toxicity and immunogenicity of polyelectrolyte nanocapsules functionalized with two different polymers: poly-L-glutamic acid or PEG. Int. J. Nanomedicine, (2019) 9587.
[224] Cao J., Chen Y. W., Wang X., Luo X. L., Enhancing blood compatibility of biodegradable polymers by introducing sulfobetaine. J Biomed Mater Res A, (2011) 97, 472.
[225] Peng S., Wang H., Zhao W., Xin Y., Liu Y., Yu X., Zhan M., Shen S., Lu L., Zwitterionic polysulfamide drug nanogels with microwave augmented tumor accumulation and on‐demand drug release for enhanced cancer therapy. Adv. Funct. Mater., (2020) 30, 2001832.
[226] Wallberg F., Tenev T., Meier P., Analysis of apoptosis and necroptosis by fluorescence-activated cell sorting. Cold Spring Harb. Protoc., (2016) 4, pdb. prot087387.
[227] Ishihara K., Chen W., Liu Y., Tsukamoto Y., Inoue Y., Cytocompatible and multifunctional polymeric nanoparticles for transportation of bioactive molecules into and within cells. Sci Technol Adv Mater., (2016) 17, 300.
[228] Shi S., Markl A. M., Lu Z., Liu R., Hoernke M., Interplay of Fusion, Leakage, and Electrostatic Lipid Clustering: Membrane Perturbations by a Hydrophobic Antimicrobial Polycation. Langmuir, (2022) 38, 2379.
[229] Zhu M., Tian P., Kurtz R., Lunkenbein T., Xu J., Schlögl R., Wachs I. E., Han Y. F., Strong Metal–Support Interactions between Copper and Iron Oxide during the High‐Temperature Water‐Gas Shift Reaction. Angew. Chem., (2019) 131, 9181.
[230] Lewis A., Tang Y., Brocchini S., Choi J.-w., Godwin A., Poly (2-methacryloyloxyethyl phosphorylcholine) for protein conjugation. Bioconjug. Chem., (2008) 19, 2144.
[231] Kutner N., Kunduru K. R., Rizik L., Farah S., Recent advances for improving functionality, biocompatibility, and longevity of implantable medical devices and deliverable drug delivery systems. Adv. Funct. Mater., (2021) 31, 2010929.
[232] Dunne M., Regenold M., Allen C., Hyperthermia can alter tumor physiology and improve chemo-and radio-therapy efficacy. Adv. Drug Deliv. Rev., (2020) 163, 98.
[233] Dash D., Baral M., Kanungo B. K., Development of a flexible tripodal hydroxypyridinone ligand with cyclohexane framework: Complexation, solution thermodynamics, spectroscopic and DFT studies. ChemistrySelect, (2021) 6, 12165.
[234] Sanchez Salcedo S., Vallet Regí M., Shahin S. A., Glackin C. A., Zink J. I., Mesoporous core-shell silica nanoparticles with anti-fouling properties for ovarian cancer therapy. Chem. Eng. J., (2018) 340, 114.
[235] Abdolrahimi M., Vasilakaki M., Slimani S., Ntallis N., Varvaro G., Laureti S., Meneghini C., Trohidou K. N., Fiorani D., Peddis D., Magnetism of nanoparticles: Effect of the organic coating. Nanomaterials, (2021) 11, 1787.
[236] Goda T., Ishihara K., Miyahara Y., Critical update on 2‐methacryloyloxyethyl phosphorylcholine (MPC) polymer science. J. Appl. Polym. Sci., (2015) 132.
[237] Chan Y.-C., Lin Y.-H., Liu H.-C., Hsu R.-S., Chiang M.-R., Wang L.-W., Chou T.-C., Lu T.-T., Lee I.-C., Chu L.-A., In situ magnetoelectric generation of nitric oxide and electric stimulus for nerve therapy by wireless chargeable molybdenum carbide octahedrons. Nano Today, (2023) 51, 101935.
[238] Li Q., Lan P., Activation of immune signals during organ transplantation. Signal Transduct. Target. Ther., (2023) 8, 110.
[239] Lu Y. C., Robbins P. F., Targeting neoantigens for cancer immunotherapy. Int. Immunol., (2016) 28, 365.
[240] Xie N., Shen G., Gao W., Huang Z., Huang C., Fu L., Neoantigens: promising targets for cancer therapy. Signal Transduct. Target. Ther., (2023) 8, 9.
[241] Krysko D. V., Garg A. D., Kaczmarek A., Krysko O., Agostinis P., Vandenabeele P., Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer., (2012) 12, 860.
[242] Luo Z., He T., Liu P., Yi Z., Zhu S., Liang X., Kang E., Gong C., Liu X., Self‐adjuvanted molecular activator (SeaMac) nanovaccines promote cancer immunotherapy. Adv. Healthc. Mater., (2021) 10, 2002080.
[243] Wu T. H., Lu Y. J., Chiang M. R., Chen P. H., Lee Y. S., Shen M. Y., Chiang W. H., Liu Y. C., Chuang C. Y., Lin H. C. A., Lung metastasis-Harnessed in-Situ adherent porous organic nanosponge-mediated antigen capture for A self-cascaded detained dendritic cells and T cell infiltration. Biomaterials, (2023) 122443.
[244] Huynh T. M. H., Yalamandala B. N., Chiang M.-R., Weng W.-H., Chang C.-W., Chiang W.-H., Liao L.-D., Liu Y.-C., Hu S.-H., Programmed antigen capture-harnessed dendritic cells by margination-hitchhiking lung delivery. Journal of Ophthalmology Clinics and Research, (2023) 358, 718.
[245] Sharma P., Hu-Lieskovan S., Wargo J. A., Ribas A., Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell, (2017) 168, 707.
[246] Ni Q., Xu F., Wang Y., Li Y., Qing G., Zhang Y., Zhong J., Li J., Liang X.-J., Nanomaterials with changeable physicochemical property for boosting cancer immunotherapy. J. Control. Release, (2022) 342, 210.
[247] Blanco E., Shen H., Ferrari M., Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol., (2015) 33, 941.
[248] Zhang F., Lu G., Wen X., Li F., Ji X., Li Q., Wu M., Cheng Q., Yu Y., Tang J., Magnetic nanoparticles coated with polyphenols for spatio-temporally controlled cancer photothermal/immunotherapy. J. Control. Release, (2020) 326, 131.
[249] Joyce J. A., Fearon D. T., T cell exclusion, immune privilege, and the tumor microenvironment. Science, (2015) 348, 74.
[250] Chao Y., Chen G., Liang C., Xu J., Dong Z., Han X., Wang C., Liu Z., Iron nanoparticles for low-power local magnetic hyperthermia in combination with immune checkpoint blockade for systemic antitumor therapy. Nano Lett., (2019) 19, 4287.
[251] Zhang J., Lin Y., Lin Z., Wei Q., Qian J., Ruan R., Jiang X., Hou L., Song J., Ding J., Yang H., Stimuli-Responsive Nanoparticles for Controlled Drug Delivery in Synergistic Cancer Immunotherapy. Adv Sci (Weinh), (2022) 9, e2103444.
[252] Kunjachan S., Detappe A., Kumar R., Ireland T., Cameron L., Biancur D. E., Motto-Ros V., Sancey L., Sridhar S., Makrigiorgos G. M., Nanoparticle mediated tumor vascular disruption: a novel strategy in radiation therapy. Nano Lett., (2015) 15, 7488.
[253] Howard M., Zern B. J., Anselmo A. C., Shuvaev V. V., Mitragotri S., Muzykantov V., Vascular targeting of nanocarriers: perplexing aspects of the seemingly straightforward paradigm. ACS nano, (2014) 8, 4100.
[254] Smith B. R., Cheng Z., De A., Koh A. L., Sinclair R., Gambhir S. S., Real-time intravital imaging of RGD− quantum dot binding to luminal endothelium in mouse tumor neovasculature. Nano Lett., (2008) 8, 2599.
[255] Frich C. K., Krüger F., Walther R., Domar C., Andersen A. H., Tvilum A., Dagnæs-Hansen F., Denton P. W., Tolstrup M., Paludan S. R., Non-covalent hitchhiking on endogenous carriers as a protraction mechanism for antiviral macromolecular prodrugs. J. Control. Release, (2019) 294, 298.
[256] Wang F., Zong R., Chen G., Erythrocyte-enabled immunomodulation for vaccine delivery. J. Control. Release, (2022) 341, 314.
[257] RB M., Kirch H., Enhanced biological activity of human recombinant interleukin 2 coupled to mouse red blood cells as evaluated using the mouse Meth A sarcoma model. Biotechnol. Appl. Biochem., (1996) 23, 29.
[258] Glassman P. M., Hood E. D., Ferguson L. T., Zhao Z., Siegel D. L., Mitragotri S., Brenner J. S., Muzykantov V. R., Red blood cells: The metamorphosis of a neglected carrier into the natural mothership for artificial nanocarriers. Adv. Drug Deliv. Rev., (2021) 178, 113992.
[259] Zaitsev S., Spitzer D., Murciano J.-C., Ding B.-S., Tliba S., Kowalska M. A., Marcos-Contreras O. A., Kuo A., Stepanova V., Atkinson J. P., Sustained thromboprophylaxis mediated by an RBC-targeted pro-urokinase zymogen activated at the site of clot formation. Blood, Am. J. Hematol., (2010) 115, 5241.
[260] Brenner J. S., Pan D. C., Myerson J. W., Marcos-Contreras O. A., Villa C. H., Patel P., Hekierski H., Chatterjee S., Tao J. Q., Parhiz H., Bhamidipati K., Uhler T. G., Hood E. D., Kiseleva R. Y., Shuvaev V. S., Shuvaeva T., Khoshnejad M., Johnston I., Gregory J. V., Lahann J., Wang T., Cantu E., Armstead W. M., Mitragotri S., Muzykantov V., Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude. Nat Commun, (2018) 9, 2684.
[261] Fan Q., Ma Q., Bai J., Xu J., Fei Z., Dong Z., Maruyama A., Leong K. W., Liu Z., Wang C., An implantable blood clot–based immune niche for enhanced cancer vaccination. Sci. Adv., (2020) 6, eabb4639.
[262] Fonseca A. M., Porto G., Uchida K., Arosa F. A., Red blood cells inhibit activation-induced cell death and oxidative stress in human peripheral blood T lymphocytes. Blood, Am. J. Hematol., (2001) 97, 3152.
[263] Li J., Ding Y., Cheng Q., Gao C., Wei J., Wang Z., Huang Q., Wang R., Supramolecular erythrocytes-hitchhiking drug delivery system for specific therapy of acute pneumonia. J. Control. Release, (2022) 350, 777.
[264] Rossi L., Pierigè F., Carducci C., Gabucci C., Pascucci T., Canonico B., Bell S. M., Fitzpatrick P. A., Leuzzi V., Magnani M., Erythrocyte-mediated delivery of phenylalanine ammonia lyase for the treatment of phenylketonuria in BTBR-Pahenu2 mice. J. Control. Release, (2014) 194, 37.
[265] Hinde E., Thammasiraphop K., Duong H. T., Yeow J., Karagoz B., Boyer C., Gooding J. J., Gaus K., Pair correlation microscopy reveals the role of nanoparticle shape in intracellular transport and site of drug release. Nat. Nanotechnol., (2017) 12, 81.
[266] Chi Y., Remsik J., Kiseliovas V., Derderian C., Sener U., Alghader M., Saadeh F., Nikishina K., Bale T., Iacobuzio Donahue C., Cancer cells deploy lipocalin-2 to collect limiting iron in leptomeningeal metastasis. Science, (2020) 369, 276.
[267] Chen M., Tan Y., Dong Z., Lu J., Han X., Jin Q., Zhu W., Shen J., Cheng L., Liu Z., Injectable anti-inflammatory nanofiber hydrogel to achieve systemic immunotherapy post local administration. Nano Lett., (2020) 20, 6763.
[268] Dhas N., Kudarha R., Pandey A., Nikam A. N., Sharma S., Singh A., Garkal A., Hariharan K., Singh A., Bangar P., Stimuli responsive and receptor targeted iron oxide based nanoplatforms for multimodal therapy and imaging of cancer: Conjugation chemistry and alternative therapeutic strategies. J. Control. Release, (2021) 333, 188.
[269] Low L. E., Lim H. P., Ong Y. S., Siva S. P., Sia C. S., Goh B.-H., Chan E. S., Tey B. T., Stimuli-controllable iron oxide nanoparticle assemblies: Design, manipulation and bio-applications. J. Control. Release, (2022).
[270] Santra S., Kaittanis C., Grimm J., Perez J. M., Drug/dye‐loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging. small, (2009) 5, 1862.
[271] Awaad A., Takemoto H., Iizuka M., Ogi K., Mochida Y., Ranneh A.-H., Toyoda M., Matsui M., Nomoto T., Honda Y., Changeable net charge on nanoparticles facilitates intratumor accumulation and penetration. J. Control. Release, (2022) 346, 392.
[272] Zhang Y., Ma S., Liu X., Xu Y., Zhao J., Si X., Li H., Huang Z., Wang Z., Tang Z., Supramolecular assembled programmable nanomedicine as in situ cancer vaccine for cancer immunotherapy. Adv. Mater., (2021) 33, 2007293.
[273] Chen D. S., Mellman I., Oncology meets immunology: the cancer-immunity cycle. immunity, (2013) 39, 1.
[274] Luo L., Iqbal M. Z., Liu C., Xing J., Akakuru O. U., Fang Q., Li Z., Dai Y., Li A., Guan Y., Engineered nano-immunopotentiators efficiently promote cancer immunotherapy for inhibiting and preventing lung metastasis of melanoma. Biomaterials, (2019) 223, 119464.
[275] Kroll A. V., Fang R. H., Jiang Y., Zhou J., Wei X., Yu C. L., Gao J., Luk B. T., Dehaini D., Gao W., Nanoparticulate delivery of cancer cell membrane elicits multiantigenic antitumor immunity. Adv. Mater., (2017) 29, 1703969.
[276] Meng J., Zhang P., Chen Q., Wang Z., Gu Y., Ma J., Li W., Yang C., Qiao Y., Hou Y., Two‐Pronged Intracellular Co‐Delivery of Antigen and Adjuvant for Synergistic Cancer Immunotherapy. Adv. Mater., (2022) 2202168.
[277] Roback J. D., Josephson C. D., Waller E. K., Newman J. L., Karatela S., Uppal K., Jones D. P., Zimring J. C., Dumont L. J., Metabolomics of ADSOL (AS-1) red blood cell storage. Transfus. Med. Rev., (2014) 28, 41.
[278] Ferguson L. T., Hood E. D., Shuvaeva T., Shuvaev V. V., Basil M. C., Wang Z., Nong J., Ma X., Wu J., Myerson J. W., Dual Affinity to RBCs and Target Cells (DART) Enhances Both Organ-and Cell Type-Targeting of Intravascular Nanocarriers. ACS nano, (2022) 16, 4666.
[279] Glassman P. M., Villa C. H., Marcos-Contreras O. A., Hood E. D., Walsh L. R., Greineder C. F., Myerson J. W., Shuvaeva T., Puentes L., Brenner J. S., Targeted In Vivo Loading of Red Blood Cells Markedly Prolongs Nanocarrier Circulation. Bioconjug. Chem., (2022) 33, 1286.
[280] Pan D. C., Myerson J. W., Brenner J. S., Patel P. N., Anselmo A. C., Mitragotri S., Muzykantov V., Nanoparticle properties modulate their attachment and effect on carrier red blood cells. Sci. Rep., (2018) 8, 1615.
[281] Villa C. H., Pan D. C., Zaitsev S., Cines D. B., Siegel D. L., Muzykantov V. R., Delivery of drugs bound to erythrocytes: new avenues for an old intravascular carrier. Ther. Deliv., (2015) 6, 795.
[282] Yong C., Chen X., Xiang Q., Li Q., Xing X., Recyclable magnetite-silver heterodimer nanocomposites with durable antibacterial performance. Bioact. Mater., (2018) 3, 80.
[283] Shima, P Damodaran S., Mesoporous Magnetite Nanoclusters as Efficient Nanocarriers for Paclitaxel Delivery. ChemistrySelect, (2020) 5, 9261.
[284] Yang G., Wang D.-Y., Liu Y., Huang F., Tian S., Ren Y., Liu J., An Y., van der Mei H. C., Busscher H. J., In-biofilm generation of nitric oxide using a magnetically-targetable cascade-reaction container for eradication of infectious biofilms. Bioact. Mater., (2022) 14, 321.
[285] Sotomayor F., Cychosz K., Thommes M., Characterization of Micro/Mesoporous Materials by Physisorption: Concepts and Case Studies. (2018).
[286] Lee J.-H., Jang J.-t., Choi J.-s., Moon S. H., Noh S.-h., Kim J.-w., Kim J.-G., Kim I.-S., Park K. I., Cheon J., Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat. Nanotechnol., (2011) 6, 418.
[287] Magnani M., Pierigè F., Rossi L., Erythrocytes as a novel delivery vehicle for biologics: from enzymes to nucleic acid-based therapeutics. Ther. Deliv., (2012) 3, 405.
[288] Sabatino R., Antonelli A., Battistelli S., Schwendener R., Magnani M., Rossi L., Macrophage depletion by free bisphosphonates and zoledronate-loaded red blood cells. PLoS One, (2014) 9, e101260.
[289] Carnemolla R., Villa C. H., Greineder C. F., Zaitsev S., Patel K. R., Kowalska M. A., Atochin D. N., Cines D. B., Siegel D. L., Esmon C. T., Targeting thrombomodulin to circulating red blood cells augments its protective effects in models of endotoxemia and ischemia-reperfusion injury. FASEB J., (2017) 31, 761.
[290] Shen S., Wang G., Zhang M., Tang Y., Gu Y., Jiang W., Wang Y., Zhuang Y., Effect of temperature and surfactant on biomass growth and higher-alcohol production during syngas fermentation by Clostridium carboxidivorans P7. Bioresour. Bioprocess., (2020) 7, 1.
[291] Norouzi M., Yathindranath V., Thliveris J. A., Kopec B. M., Siahaan T. J., Miller D. W., Doxorubicin-loaded iron oxide nanoparticles for glioblastoma therapy: a combinational approach for enhanced delivery of nanoparticles. Sci Rep, (2020) 10, 11292.
[292] Feng Y., Liu Q., Li Y., Han Y., Liang M., Wang H., Yao Q., Wang Y., Yang M., Li Z., Gong W., Yang Y., Gao C., Cell relay-delivery improves targeting and therapeutic efficacy in tumors. Bioact Mater, (2021) 6, 1528.
[293] Yang H., Sun L., Guan A., Yin H., Liu M., Mao X., Xu H., Zhao H., Lu X., Sang X., Unique TP53 neoantigen and the immune microenvironment in long-term survivors of Hepatocellular carcinoma. CII, (2021) 70, 667.