研究生: |
謝承諭 Hsieh, Cheng-Yu |
---|---|
論文名稱: |
以光纖雷射用於光纖雙馬赫詹德干涉儀入侵感測定位系統:平均法改善定位解析度 Study of Dual Mach-Zehnder Interferometer Intrusion Detection and Location Using Fiber Laser: Location Resolution Improvement by Averaging Method |
指導教授: |
王立康
Wang, Li-Karn |
口試委員: |
施宙聰
Shy, Jow-Tsong 馮開明 Feng, Kai-Ming |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 61 |
中文關鍵詞: | 光纖雷射 、雙馬赫詹德干涉儀 、入侵感測定位系統 |
外文關鍵詞: | Fiber laser, Dual Mach-Zehnder interferometer, Intrusion detection and location system |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗為一分布式光纖入侵感測定位系統,使用一自製窄線寬雷射光源等比例分成兩道光從正向及逆向打入一用來偵測入侵之馬赫詹德干涉儀,並在人為敲擊感測光纜後,利用接收到之干涉訊號判定入侵位置。本實驗計算振動引起的訊號之三個參數值,判斷其是否超出閾值以決定光纜是否受到入侵振動,並利用傅立葉轉換搭配特徵閾值來決定入侵位置,並利用一秒內多圖平均之方式來減少誤差過大之情況。
In this study, we use a self-made narrow linewidth fiber laser as a light source for the optical intrusion detection system. We split the laser light into two parts by a 5:5 fiber coupler and launch them into the same Mach-Zehnder interferometer at the two ends, respectively, such that one input laser light goes clockwise and the other one goes counterclockwise. Swatting the fiber cable, we measure the interference patterns collected by a DAQ card and use them to position the location of swatting. Such swatting may correspond to intrusion that is to be detected and located. The swatting effectively caused a vibration upon the fiber cable that contained a Mach-Zehnder interferometer for detecting the intrusion. We use 3 thresholds to define whether the fiber cable is being intrusively vibrated or not. Besides, we use Fourier transform method to locate the intrusion. Finally, we average the positions calculated for multiple time frames that sum up to one second to improve the location accuracy.
[1] K. C. Kao and G. A. Hockham, “Dielectric-fiber surface waveguides for optical frequencies,” Proceedings of the IEEE. Institute of Electrical and Electronics Engineers, vol. 113, pp. 1151–1158, 1966.
[2] C. Waltermann, J. Koch, M. Angelmahr, and et al. “Femtosecond laser aided processing of optical sensor fibers for 3D medical navigation and tracking (FiberNavi),” 23rd International Conference on Optical Fiber Sensors. International Society for Optics and Photonics, Proceedings of SPIE, vol. 9157, pp. 91577G1-91577G-4, 2014.
[3] M. Hassan, E. Gonzalez, V. Hitchins, and I. Ilev, “Detecting bacteria contamination on medical device surfaces using an integrated fiber-optic mid-infrared spectroscopy sensing method,” Sensors and Actuators B: Chemical, vol. 231, pp. 646-654, 2016.
[4] G. Erdemir, O. Selvi, V. Ertekin, and G. Eşgi, “Project PISCES: Developing an in-flight entertainment system for smart devices,” International Conference on Information Technology, 2017.
[5] Klar, Assaf, I. Dromy, and R. Linker, “Monitoring tunneling induced ground displacements using distributed fiber-optic sensing,” Tunnelling and Underground Space Technology, vol. 40, pp. 141-150, 2014.
[6] M. Deng, Y. Zhao, F. Yin, and T. Zhu, “Interferometric fiber-optic tilt sensor exploiting taper and lateral-offset fusing splicing,” IEEE Photonics Technology Letters, vol. 28, no. 20, pp. 2225-2228, 2016
[7] Z. Liu, Y. Bo, B. Zhou, and et al. “Analysis of the mechanics and deformation characteristics of optical fiber acceleration sensor,” International Symposium on Optoelectronic Technology and Application. International Society for Optics and Photonics, Proceedings of SPIE, vol. 10155, pp. 101553U-1-101553U-8, 2016.
[8] J. E. Antonio-Lopez, Z. S. Eznaveh, P. LiKamWa, A. Schülzgen, and R. Amezcua-Correa, “Multicore fiber sensor for high-temperature applications up to 1000° C,” Optics Letters, vol. 39, no. 15, pp. 4309-4312, 2014.
[9] Y. Geng, X. Li, X. Tan, Y. Deng, and X. Hong, “Compact and ultrasensitive temperature sensor with a fully liquid-filled photonic crystal fiber Mach–Zehnder interferometer,” IEEE Sensors Journal, vol. 14, no. 1, pp.167-170, 2014.
[10] R. Gao, Y. Jiang, and S. Abdelaziz, “All-fiber magnetic field sensors based on magnetic fluid-filled photonic crystal fibers,” Optics Letters, vol. 38, no. 9, pp. 1539-1541, 2013.
[11] Y. Zheng, X. Dong, C. C. Chan, P. P. Shum, H. Su, “Optical fiber magnetic field sensor based on magnetic fluid and microfiber mode interferometer,” Optics Communications, vol. 336, pp. 5-8, 2015.
[12] K. Bohnert, P. Gabus, J. Kostovic, H. Brandle, “Optical fiber sensors for the electric power industry,” Optics and Lasers in Engineering, vol. 43, no. 3, pp. 511-526, 2005.
[13] Z. Cao, Z. Zhang, X. Ji, et al. “Strain-insensitive and high temperature
fiber sensor based on a Mach–Zehnder modal interferometer,” Optical Fiber
Technology, vol. 20, no. 1, pp. 24-27, 2014.
[14] F. Zhu, Y. Zhang, L. Xia, et al. “Improved Φ-OTDR sensing system for high-precision dynamic strain measurement based on ultra-weak fiber Bragg grating array,” Journal of Lightwave Technology, vol. 33, no. 23, pp. 4775-4780, 2015.
[15] Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of Phase-OTDR,” Journal of Lightwave Technology, vol. 28, no. 22, pp. 3243–3249, 2010.
[16] Paul R. Hoffman, and Mark G. Kuzyk, “Position determination of an acoustic burst along a Sagnac interferometer,” Journal of Lightwave Technology, vol. 22, no. 2, pp. 494–498, 2004.
[17] X. Hong, J. Wu, C. Zuo, F. Liu, H. Guo, and K. Xu, “Dual Michelson interferometers for distributed vibration detection,” Applied Optics, vol. 50, no. 22, pp. 4333–4338, 2011.
[18] Z. Zhang and X. Bao, “Distributed optical fiber vibration sensor based on spectrum analysis of Polarization-OTDR system,” Optics Express, vol. 16, pp. 10240–10247, 2008.
[19] S. J. Spammer, P. L. Swart, and A. A. Chtcherbakov, “Merged Sagnac-Michelson interferometer for distributed disturbance detection,” Journal of Lightwave Technology, vol.15, no. 6, pp. 972–976, 1997.
[20] https://en.wikipedia.org/wiki/Optical_fiber
[21] https://www.fiberoptics4sale.com/blogs/archive-posts/95052294-optical-fiber-attenuation
[22] https://en.wikipedia.org/wiki/Optical_isolator
[23] https://en.wikipedia.org/wiki/Polarization-maintaining_optical_fiber
[24] https://www.newport.com/t/polarization-in-fiber-optics
[25] https://www.rp-photonics.com/polarizers.html
[26] https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=6673
[27] https://www.fiber-mart.com/news/fiber-optic-couplers-and-splitters-tutorial-a-922.html
[28] https://www.newport.com/medias/sys_master/images/images/h86/hb2/8797287088158/Tech-Note-26-How-Fused-Fiber-Optic-Couplers-Work.pdf
[29] https://www.photonics.com/Articles/ThinFilm_Optical_Filters_for_Phase_Control/a58006
[30] https://www.fiberlabs-inc.com/glossary/erbium-doped-fiber-amplifier/
[31] https://www.rp-photonics.com/tutorial_fiber_amplifiers5.html
[32] 何馨仁,「雙Mach-Zehnder干涉儀用於分佈式光纖入侵感測定位之研究」,國立清華大學光電工程研究所碩士班碩士論文,民國一百零六年七月。
[33] J. Jiang, J. An, K. Liu, et al. “Long range distributed fiber vibration sensor using an asymmetric dual Mach–Zehnder interferometers,” Journal of Lightwave Technology, vol. 34, no. 9, pp. 2235–2239, 2016.
[34] J. Jiang, J. An, K. Liu, et al. “A fast positioning algorithm for the asymmetric dual Mach–Zehnder interferometric infrared fiber vibration sensor,” Infrared Physics & Technology, vol.85, pp.359-363, 2017.
[35] X. Huang, H. Zhang, K. Liu, et al. “Hybrid Feature Extraction-Based Intrusion Discrimination in Optical Fiber Perimeter Security System,” IEEE Photonics Journal, vol. 9, no. 1, 7800212, 2017.