簡易檢索 / 詳目顯示

研究生: 黃智沂
Abner Chih Yi Huang
論文名稱: 圖的k 多重支配問題
K-Tuple Domination Problem on Graphs
指導教授: 唐傳義
Chuan Yi Tang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 31
中文關鍵詞: 圖論演算法支配k多重支配計算理論
外文關鍵詞: Graph Theory, Algrotihmics, Domination, k-tuple Domination, Computational Complexity
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 支配問題在圖形演算法上是很有名的問題, k 多重支配問題 就是其延伸。這個問題要求圖上的一個點不只要被一個點給支配,而是要被 k 個點支配。

    針對樹的最小權值 k 多重支配問題,,拙作給了一個線性時間的演算法。針對平面圖,也證明其屬於 NP 完備集,此外也指出該證明之技巧不只對平面圖有用,還有很多圖類也可以被應用。


    In a graph $G(V,E)$, a vertex $v$ dominates a vertex $u$ if $u=v$ or there is an edge from $v$ to $u$. A dominating set of $G$ is a subset $D$ of $V$ such that every vertex in $V$ is dominated by at least one vertex in $D$. Domination problem, that is proposed by K{\"o}nig, and its variations have fruitful literature more than $300$ publications. One class of those interesting variations is the {\it multiple domination problems}, i.e., each vertex in $V$ requires to be dominated by more than one vertex in $D$. In this thesis, we study the $k$-tuple domination problem on several graph classes. We give a linear time algorithm of weighted $k$-tuple domination problem, and prove NP-completeness of $k$-tuple domination problem on some graph classes like planar graphs.

    Abstract I Acknowledgement II 1 Introduction 1 2 Preliminaries 3 2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Variations of Domination Set Problem . . . . . . . . . . . . . . . . 6 2.3 k-Tuple Domination Problem . . . . . . . . . . . . . . . . . . . . . 7 3 Algorithmic Results 9 3.1 Weighted k-Tuple Domination on Tree . . . . . . . . . . . . . . . . 9 3.1.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4 Results of Computational Complexity 22 4.1 Hardness of k-Tuple Domination . . . . . . . . . . . . . . . . . . . . 22 4.1.1 k-Tuple Domination on Planar Graph and Others . . . . . . 23 4.1.2 Fixed Parameterized Reduction and Its Applications . . . . 25 5 Conculsion and Future Work 29 Bibliography 30

    [1] D. W. Bange, A. E. Barkauskas, P. J. Slater, E±cient dominating sets in
    graphs, in: D. Ringeisen, F. S. Roberts (eds.), Applications of Discrete Math-
    ematics, SIAM, Philadelphia, PA, 1988, pp. 189{199.
    [2] J. Bondy, U. Murty, Graph Theory With Applications, Elsevier Science Ltd,
    1976.
    [3] A. BrandstÄadt, V. B. Le, J. P. Spinrad, Graph classes: a survey, Society for
    Industrial and Applied Mathematics, Philadelphia, PA, USA, 1999.
    [4] R. Diestel, Graph Theory, vol. 173 of Graduate Texts in Mathematics,
    Springer-Verlag, Heidelberg, 2005.
    [5] G. S. Domke, S. T. Hedetniemi, R. C. Laskar, G. Fricke, Relationships be-
    tween integer and fractional parameters of graphs, in: Graph theory, com-
    binatorics, and applications, Vol. 1 (Kalamazoo, MI, 1988), vol. 1 of Wiley-
    Intersci. Publ., Wiley, New York, 1991, pp. 371{387.
    [6] J. F. Fink, M. S. Jacobson, n-Domination in graphs, John Wiley & Sons,
    Inc., New York, NY, USA, 1985, pp. 283{300.
    [7] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the
    Theory of NP-Completeness, W. H. Freeman & Co., New York, NY, USA,
    1979.
    [8] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, vol. 57 of
    Annals of Discrete Mathematics, 2nd ed., North-Holland, 2004.
    [9] F. Harary, T. W. Haynes, Double domination in graphs, Ars Combin. 55
    (2000) 201{213.
    [10] T. Haynes, S. Hedetniemi, P. Slater, Fundamentals of domination in graphs,
    Pure and Applied Mathematics, Marcel Dekker, London, UK, 1998.
    [11] M. A. Henning, Restricted domination in graphs, Discrete Mathematics
    254 (1-3) (2002) 175{189.
    [12] R. Klasing, C. Laforest, Hardness results and approximation algorithms of
    k-tuple domination in graphs, Information Processing Letters 89 (2) (2004)
    75{83.
    [13] C.-S. Liao, G. J. Chang, Algorithmic aspect of k-domination in graphs, Tai-
    wanese J. Math. 6 (2002) 415{420, nSC89-2115-M009-037 and Lee Center.
    [14] C.-S. Liao, G. J. Chang, k-tuple domination in graphs, Information Processing
    Letters 87 (1) (2003) 45{50.
    [15] M. Satratzemi, K. G. Margaritis, C. Tsouros, An algorithm for prescribed
    multiple domination in arbitrary graphs, Computers & Mathematics with
    Applications 35 (8) (1998) 109{115.
    [16] M. Satratzemi, K. Tsouros, Double domination algorithms in graphs, in:
    Hellenic European research on mathematics and informatics '94, Vol. 1, 2
    (Athens, 1994), Hellenic Math. Soc., Athens, 1994, pp. 509{516.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE