研究生: |
吳念臻 Wu, Nien-Chen |
---|---|
論文名稱: |
Cactus 和 Atg5-RNAi 的過表達對果蠅發育的影響 Effect of Cactus and Atg5-RNAi overexpression on Drosophila development |
指導教授: |
徐瑞洲
Hsu, Jui-Chou |
口試委員: |
桑自剛
Sang, Tzu-Kang 張慧雲 Chang, Hui-yun |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 33 |
中文關鍵詞: | 果蠅 、發育 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Flp-out gal4 system 被廣泛的使用在果蠅中,選擇性的調控特定基因來形成etopic clone。熱休克會啟動Flp-out gal4 system,進而產生flippase,使marker gene被剪出,表達出下游的Gal4,Gal4會結合到染色體上的UAS序列,表達出特定的基因,並同時表達綠螢光蛋白,方便觀察幼蟲的翅膀成蟲盤上,etopic clone的位置。到目前為止,我們已經發現(1)抑制Atg5(2)過表達Toll pathway中的cactus,可以增加clone誘導的頻率,這個機制與細胞分裂和細胞凋亡沒有相關。且atg5-RNAi是誘導clone的負調控物,cactus則是正調控物。另外,我們利用RNA-seq發現,抑制了atg5的細胞,有許多核醣體蛋白的基因表現量提高;且atg5被抑制的細胞,與cactus過表達的細胞,有相同的基因表現量下降。目前,我們正在測試核醣體蛋白基因表現量是否是clone誘導增加的原因。
The FLP-out Gal4 system is widely used to generate ectopic clones of cells in Drosophila. A short pulse of heat shock induces FLP-out event that allows the clonal expression of Gal4 and the co-expression of UAS-GFP and UAS-gene-of interest (GOI). Upon specific GOI overexpression, we quantified the number of GFP-positive clones generated at 24 h after heat shock in the wing discs, we can identify the genes positively or negatively regulate clonal induction. Thus far, we have identified that (1) knockdown autophagy related 5 (atg5) and (2) inhibition of Toll pathway by cactus overexpression greatly increase the frequency of clonal induction, with a mechanism independent of cell division and cell death. Thus, atg5 is a negative regulator whereas cactus is a positive regulator of clonal induction. Moreover, through RNA-seq of atg5 knockdown cells, we have identified that many ribosomal protein genes are up-regulated. Currently, we are testing whether increased translation might contribute to increased clonal induction.
N. A. Theodosiou, T. Xu. (1998). Use of FLP/FRT system to study Drosophila development, Methods, 14(4), 355-365.
S. N. Meyer, M. Amoyel, C. Bergantiños, C. de la Cova, C. Schertel, K. Basler, L. A. Johnston. (2014). An ancient defense system eliminates unfit cells from developing tissues during cell competition, Science, 346(6214).
Tsai Jun-Ting. (2019). Overexpression of Atg5-RNAi Influence development of drosophila wing disc.
Laura A. Johnston, David A. Prober, Bruce A. Edgar, Robert N. Eisenman, Peter Gallant. (1999). Drosophila myc regulates cellular growth during development, Cell, 98(6).
Roumen Voutev , E Jane Albert Hubbard. (2008). A "FLP-Out" system for controlled gene expression in Caenorhabditis elegans, Genetics, 180(1).
Sarah Bowling, Katerina Lawlor, Tristan A. Rodríguez. (2019). Cell competition: the winners and losers of fitness selection, Development, 146.
Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA, (1996). The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973–983.
Weber AN, Tauszig-Delamasure S, Hoffmann JA, Lelievre E, Gascan H, Ray KP, Morse MA, Imler JL, Gay NJ. (2003). Binding of the Drosophila cytokine Spatzle to Toll is direct and establishes signaling. Nat Immunol 4:794–800.
Ip YT, Reach M, Engstrom Y, Kadalayil L, Cai H, Gonzalez-Crespo S, Tatei K, Levine M. (1993). Dif, a dorsal-related gene that mediates an immune response in Drosophila. Cell 75:753–763.
Lale Alpar, Cora Bergantiños, Laura A.Johnston. (2018). Spatially Restricted Regulation of Spätzle/Toll Signaling during Cell Competition, Developmental Cell, 46.
Takayuki Kuraishi,Hirotaka Kanoh, Yoshiki Momiuchi, Hiroyuki Kenmoku, Shoichiro Kurata. (2016). The Drosophila Toll Pathway: A Model of Innate Immune Signalling Activated by Endogenous Ligands, Chronic Inflammation, 119-129.
Federico Germani, Daniel Hain, Denise Sternlicht, Eduardo Moreno, Konrad Basler. (2018). The Toll pathway inhibits tissue growth and regulates cell fitness in an infection-dependent manner. eLife, 7.