研究生: |
鄭志宏 Chi-Hong Cheng |
---|---|
論文名稱: |
薄膜電晶體特性與可靠度分析 Characteristics and Reliability of Thin Flm Transistors |
指導教授: |
張廖貴術
Kuei-Shu Chang-Liao |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 73 |
中文關鍵詞: | 薄膜電晶體 、電漿蝕刻 、可靠度 |
外文關鍵詞: | Thin Film Transistors, Plasma, relaibility |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這本論文裡,我們設計並且製造了多種結構的多晶矽薄膜電晶體。實驗結果顯示出具有多通道及多閘極的薄膜電晶體會有較好的初始特性,諸如較高的導通電流、較低的臨界電壓及較小的次臨界斜率。這是由於多通道的薄膜電晶體可以增加閘極對於通道的控制能力並且得到好的初始特性。而多通道薄膜電晶體的漏電流相對於單一通道的元件也減少許多,這是由於有更多的矽-氮鍵可以形成因而減少漏電流。而多閘極薄膜晶體初始特性的改善也被觀察到,例如較高的導通電流、較低的臨界電壓及較小的次臨界斜率。然而在熱載子應力測試後,多通道及多閘極的薄膜電晶體都有較多的衰退特性,輕摻雜汲極(LDD)或是閘極重疊輕摻雜汲極(GOLDD)設計可以用來抑制嚴重的離子轟擊並且改善特性。
電漿蝕刻對於薄膜電晶體的影響也在本論文中被探討。實驗結果顯示面積效應及周長效應對於薄膜電晶體在元件初始特性上均沒有明顯的影響。而在熱載子應力測試後,元件特性均隨著時間的增加而衰退許多。對於面積效應薄膜電晶體而言,電漿蝕刻產生的傷害和閘極面積比例沒有明顯關係;而對於周長效應薄膜電晶體,電漿蝕刻所造成的傷害是更為顯著的。這是由於元件具有較大的周長相對於較小的周長會收集較多的電荷。電漿蝕刻效應對元件造成潛在的傷害諸如固定氧化層缺陷(Oxide trap charges)並且產生較多的介面陷阱(Interface trap charges)。增加氧化層的強度是被認為可以減少電漿蝕刻傷害的方法之一。
In this thesis, we designed and fabricated poly-Si TFTs with various design structures. Experiment results reveal that TFTs with multi-channel design can obtain better initial characteristics such as higher Ion current, lower threshold voltage, and smaller subthreshold swing. It is because that multi-channel structure can enhance gate control ability, and furthermore improve initial characteristics. Also the leakage current of TFT with multi-channel is eliminated compared with single channel due to more effective region passivation can performed. As for multi-gate TFTs, the improvement on initial characteristic is also observed. And multi-gate TFT exhibits higher Ion current, smaller threshold voltage, and smaller subthreshold swing. After hot carrier stress, TFTs with multi-channel and multi-gate design both show poor reliability than that with single gate one which may due to higher Ion impact ionization. LDD or GOLD design can be adopted to suppress severe impact ionization induced reliability instability.
Then TFTs with plasma charging effects were investigated. The initial characteristics of area antenna and peripheral antenna show less dependence to plasma charging effect. After hot carrier stress, parameter degradation and variation change with stress time. TFTs with higher area ratio (AR) don’t show obvious reliability degradation by plasma charging damage. As for peripheral TFTs, the plasma charging induced damage become vivid. It is concluded that TFTs with larger peripheral length can collect more charges than shorter peripheral one. The plasma charging damage may induce more fixed oxide trap charges and contribute poorer interface such as more interface trap states. Strengthening the roughness of the gate dielectric is one of the strategies for reducing the damage induced by the plasma charging damage effects.
Chapter 1
[1] C.H. Fa, and T.T. Jew, “The polysilicon insulated-gate field-effect transistor,”
IEEE Trans. Electron Devices, vol. 13, no. 2, pp. 290, 1966.
[2] Y. Oana, “Current and future technology of low-temperature poly-Si TFT-LCDs,”
Journal of the SID, vol. 9, pp. 169-172, 2001.
[3] S. Morozumi, K. Oguchi, S. Yazawa, Y. Kodaira, H. Ohshima, and T. Mano, “B/W and color LC video display addressed by poly-Si TFTs,” SID Dig., pp.156, 1983.
[4] R.E. Proano, R. S. Misage, D. Jones, and D. G. Ast, “Guest-host active matrix liquid-crystal display using high-voltage polysilicon thin film transistors,” IEEE Trans. Electron Devices, vol. 38, pp. 1781, 1991.
[5] S. Batra, “Development of drain-offset (DO) TFT technology for high density SRAM’s,” Extended Abstracts, vol.94-2, in Electrochemical Soc. Fall Mtg., Miami Beach, FL, Oct. pp. 677,1994.
[6] M. Cao, et al., “A simple EEPROM cell using twin polysilicon thin-film transistors, ” IEEE Trans. Electron Devices, vol. 15, pp. 304, 1994.
[7] N.D. Young, G. Harkin, R. M. Bunn, D. J. McCulloch, and I. D. French, “The fabrication and characterization of EEPROM arrays on glass using a low temperature poly-Si TFT process,” IEEE Trans. Electron Devices, vol. 43, pp. 1930-1936, 1996.
[8] K.Banerjee, S. J. Souri, P. Kapur, and K. C. Saraswat, “3-D ICs: a novel chip design for improving deep-submicrometer interconnect performance and system-on-chip integration,” Proceedings of the IEEE, vol.89, pp. 602-633, 2001.
[9] W.G. Hawkins, “Polycrystalline-silicon device technology for large-area electronics,” IEEE Trans. Electron Devices, vol. 33, pp. 477-481, 1986.
[10] H. Kuriyama et al., “Enlargement of poly-Si film grain size by excimer laser annealing and its application to high-performance poly-Si thin film transistor,” Jpn. J. Appl. Phys., vol. 30, pp. 3700-3703, 1991.
[11] A. Nakamura, F. Emoto, E. Fujii, and A. Tamamoto, “A high-reliability, low-operation-voltage monolithic active-matrix LCD by using advanced solid-phase growth technique,” IEDM Tech. pp.847, 1990.
[12] G.K. Guist, and T. W. Sigmon, “High-performance laser-processed polysilicon thin-film transistors,” IEEE Electron Device Lett., vol. 20, no. 2, pp. 77-79,1999.
[13] N. Kudo, N. Kusumoto, T. Inushima, and S. Yamazaki, “Characterization of polycrystalline-Si thin-film transistors fabricated by excimer laser annealing method,” IEEE Trans. Electron Devices, vol. 40, pp. 1876-1879, 1994.
[14] S.W. Lee, T. H. Ihn, and S. K. Joo, “Fabrication of high-mobility p-channel poly-Si thin-film transistors by self-aligned metal-induced lateral crystallization,” IEEE Electron Device Lett., vol. 17, no. 8, pp. 407-409, 1996.
[15] 陳志強 低溫複晶矽顯示器技術
[16] M. J. Tasi, F. S. Wang, K. L. Cheng, S. Y. Wang, M. S. Feng, and H. C. Chen, “Characterization of H2/N2 plasma passivation process for poly-Si thin-film transistors (TFTs),” Solid State Electronics, vol. 38, no. 5, pp.1233-1238, 1995
[17] C. K. Yang, T. F. Lei, C. L. Lee, “Improved electrical characteristics of thin-film transistors fabricated on nitrogen-implanted polysilicon films,” IEDM Tech Dig., pp. 505, 1994.
[18] C. K. Yang, T. F. Lei, C. L. Lee, “The combined effects of low pressure NH3
annealing and H2 plasma hydrogenation on polysilicon thin-film-transistors,” IEEE Electron Device lett., vol. 15, pp. 389-390, 1994.
[19] H. C. Cheng, F. S. Wang, and C. Y. Huang, “Effects of NH3 plasma passivation on n-channel Polycrystalline silicon thin-film-transistors,” IEEE Trans. Electron
Devices, vol. 44, no. 1, pp. 64-68, 1997.
[20] S. Ikeda, S. Hashiba, I. Kuramoto, H. Katoh, S. Ariga, T. Yamanka, T. Hashimoto, N. Hashimoto, and S. Megura, “A polysilicon transistor technology for large capacitance SRAMS,” in IEDM Tech. Dig., pp. 459-463, 1990.
[21] H. N. Chern, C. L. Lee, and T. F. Lei, “H2/O2 plasma on polysilicon thin film transistor,” IEEE Electron Device Lett., vol. 14, pp.115-117, 1993.
[22] S. Seki, O. Kogure, and B. Tsujiyama, IEEE Electron Device Lett., vol. 8, pp. 434–436, 1987.
[23] K. Tanaka, H. Arai, and S. Kohda, “Characteristics of off-set structure polycristalline-silicon thin-film transistors,” IEEE Electron Device Lett.,
vol. 9, pp. 23–25, 1988.
[24] R. E. Proano, R. S. Misage, and D. G. Ast, “Development and electrical characteristics of undoped polycristalline silicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 36, pp. 1915–1922, 1989.
[25] J. R. Ayres, S. D. Brotherton, D. J. McCulloch, and M. J. Trainor, “Analysis of drain field and hot-carrier stabilty in polysilicon thin-film transistors,” Jpn. J. Appl. Phys., vol. 37, pp. 1801–1808, 1998.
[26] M. Valdinoci, L. Colalongo, G. Baccarani, G. Fortunato, A. Pecora, and I. Policicchio, “Floating body effects in polysilicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 44, pp. 2234–2241, 1997.
[27] G. Baccarani, B. Ricco, and G. Sachini, “Transport properties of polycrystalline silicon films,” J. Appl. Phys., vol. 49, no. 11, p. 5565-5570, 1978.
[28] T. I. Kamins, “Field-effects in polycrystalline-silicon films,” Solid-State Electron., vol. 15, pp. 789-799, 1972.
[29] J. W. Seto, “Electrical properties of polycrystalline silicon films,” J. Appl. Phys., vol. 46, pp. 5247-5254, 1975.
[30] J. Levinson, F. R. Shepherd, P. J. Scalom, W. D. Westwood, G. Este, and M. Rider, “Conductivity behavior in polycrystalline semiconductor thin film transistor,” J. Appl. Phys., vol. 53, no. 2, pp. 1193-1202, 1982.
[31] J. G. Fossum and A. Ortiz-Conde, “Effects of grain boundaries on the channel conductance of SOI MOSFET’s,” IEEE Trans. Electron Devices, vol. 30, no. 8, pp. 933-940, 1983.
[32] N. Yamauchi, J-J. J. Hajjar, R. Reif, K. Nakazawa, and K. Tanaka, “Characteristics of narrow-channel polysilicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 38, no. 8, pp.1967-1968, Aug. 1991.
[33] H. W. Zen, T. C. Chang, P. S. Shih, D. Z. Peng, T. Y. Hwang, and C. Y. Chang, “Analysis of narrow width effects in polycrystalline silicon thin film transistors,” Jpn. J. Appl. Phys., vol. 42, pp.28-32, 2003.
[34] T. Takeshita, T. Unagami, and O. Kogure, “Study on narrow-stripe polycrystalline silicon thin-film transistors,” Jpn. J. Appl. Phys., vol. 27, no. 10,
pp. 1937-1941, Oct. 1988.
[35] T. Unagami, and O. Kogure, “Large On/Off current ratio and low leakage current poly-Si TFT’s with multichannel structure,” IEEE Trans. Electron Devices, vol. 35, no. 11, pp. 1986-1989, 1988.
[36] T. Unagami, “High-voltage poly-Si TFT’s with multichannel structure,” IEEE Trans. Electron Devices, vol. 35, no. 12, pp. 2363-2367, 1988.
[37] Y. C. Wu, C. Y. Chang, T. C. Chang, P. T. Liu, C. S. Chen, C. H. Tu, H. W. Zan, Y.H. Tai, and S. M. Sze, “High performance and high reliability polysilicon thin-film transistors with multiple nano-wire channels,” in IEDM Tech. Dig., pp.777-780, 2004.
[38] Pei-Jer Tzeng, Jen-Chieh Li ,Chun-Chen Yeh and Kuei-Shu Chang-Liao “Reduction and Non-uniformity of High Density Plasma Process Induced Electrical Degradation in MOS devices” International Symposium on Plasma Process-Induced Damage. P. 100-103 ,1999.
Chapter 3
[1] J. Levinson, F. R. Shepherd, P. J. Scalom, W. D. Westwood, G. Este, and M. Rider, “Conductivity behavior in polycrystalline semiconductor thin film transistor,” J Appl. Phys., vol. 53, no. 2, pp. 1193-1202, 1982.
[2] J. G. Fossum and A. Ortiz-Conde, “Effects of grain boundaries on the channel conductance of SOI MOSFET’s,” IEEE Trans. Electron Devices, vol. 30, no. 8,
pp. 933-940, 1983.
[3] G. Baccarani, B. Ricco, and G. Sachini, “Transport properties of polycrystalline silicon films,” J. Appl. Phys., vol. 49, no. 11, p. 5565-5570, 1978.
[4] T.I. Kamins, “Field-effects in polycrystalline-silicon films,” Solid-State Electron., vol. 15, pp. 789-799, 1972.
[5] J.W. Seto, “Electrical properties of polycrystalline silicon films,” J. Appl. Phys., vol. 46, pp. 5247-5254, 1975.
[6] N. Yamauchi, J-J. J. Hajjar, R. Reif, K. Nakazawa, and K. Tanaka, “Characteristics of narrow-channel polysilicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 38, no. 8, pp.1967-1968,. 1991.
[7] H.W. Zen, T.C. Chang, P.S. Shih, D.Z. Peng, T.Y. Hwang, and C.Y. Chang, “Analysis of narrow width effects in polycrystalline silicon thin film transistors,” Jpn. J. Appl. Phys., vol. 42, pp.28-32, 2003.
[8] P.S. Shih, H.W. Zan, T.C. Chang, T.Y. Huang, and C.Y. Chang, “Dimensional effects on the drain current of n- and p-channel polycrystalline silicon thin film
transistors,” Jpn. J. Appl. Phys., vol. 39, pp. 3879-3882, 2000.
[9] H.W. Zan, P. S. Shih, T. C. Chang, and C. Y. Chang, “Dimensional effects on the reliability of polycrystalline silicon thin-film transistors,” Microelectronics Reliability, vol. 40, pp. 1479-1483, 2000.
[10] T. Takeshita, T. Unagami, and O. Kogure, “Study on narrow-stripe
polycrystalline silicon thin-film transistors,” Jpn. J. Appl. Phys., vol. 27, no. 10, pp. 1937-1941, Oct. 1988.
[11] T. Unagami, and O. Kogure, “Large On/Off current ratio and low leakage current poly-Si TFT’s with multichannel structure,” IEEE Trans. Electron Devices, vol. 35, no. 11, pp. 1986-1989, Nov. 1988.
[12] T. Unagami, “High-voltage poly-Si TFT’s with multichannel structure,” IEEE Trans. Electron Devices, vol. 35, no. 12, pp. 2363-2367, Dec. 1988.
[13] Y.C. Wu, C.Y. Chang, T.C. Chang, P.T. Liu, C.S. Chen, C.H. Tu, H.W. Zan, Y. H. Tai, and S.M. Sze, “High performance and high reliability polysilicon thin-film transistors with multiple nano-wire channels,” in IEDM Tech. Dig., pp. 777-780, Dec. 2004.
[14] J.H. Park, and C. J. Kim, “A study on the fabrication of a multigate /multichannel polysilicon thin-film transistor”, Jpn. J. Appl. Phys., vol. 36, p. 1428-1432, Mar. 1997.
[15] S. Z, R. Han, J.K. O. Sin, and M. Chan, “Reduction of Off-Current in Self-Aligned Double-Gate TFT With Mask-Free Symmertic LDD,” IEEE Trans.
Electron Devices, vol. 49, p. 1490-1492, Aug. 2002.
Chapter 4
[1] Pei-Jer Tzeng, Jen-Chieh Li ,Chun-Chen Yeh and Kuei-Shu Chang-Liao “Reduction and Non-uniformity of High Density Plasma Process Induced Electrical Degradation in MOS devices” International Symposium on Plasma Process-Induced Damage. P. 100-103 (1999).
[2] J.P. McVittie, “Plasma charging damage: An overview”, 1st International Symp. on Plasma Process Induced Damage, p.7 (1996).
[3] S. Krishnan et al, “Antenna device reliability for ULSI processing”, IEEE IEDM, p.113 (1998).
[4] K. Hashimoto et al, “Reduction of the charging damage from electron shading effect”, Appl. Phys. Lett., Vol.62, No.13, p.1507 (1993).
[5] Koichi Hashimoto et al, “Charging damage caused by electron shading effect”, Jpn. J. Appl. Phys. Part 1, Vol.33, No.10, p.6013 (1994).
[6] T. Brozek et al, “Oxide modification near gate edge due to plasma etching of poly-Si gate in submicron MOSFETs”, 1st International Symp. on Plasma Process Induced Damage, p.177 (1996)
[7] H.J. Tao et al, “ Impacts of etcher chamber design on plasma induced devices damage for advanced oxide etching”, 3rd International Symp. on Plasma Process Induced Damage, p.60 (1998).
[8] M. Oner et al, “Effects of magnetic fields in the plasma chamber on hot carrier response of CMOS devices”, 3rd International Symp. on Plasma Process Induced Damage, p.108 (1998)
[9] M.A. Lieberman et al, “Principles of plasma discharges and materials processing”, John Wiley & Sons, p.18 (1994).
[10] O.A. Popov et al, “High density plasma sources”, Noyes Pub, p.197 (1995).