研究生: |
呂俊賢 Chun-Shien Lu |
---|---|
論文名稱: |
外圍平面圖之即時遞減式連結問題 The on-line decremental connectivity in outerplanar graphs |
指導教授: |
王炳豐
Biing-Feng Wang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 英文 |
論文頁數: | 27 |
中文關鍵詞: | 動態圖形問題 、遞減式 、圖形連接關係 、外圍平面圖 、即時演算法 、平面圖 |
外文關鍵詞: | dynamic graph problems, decremental, graph connectivity, outerplanar graphs, on-line algorithms, planar graphs |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當我們對一個圖形動態的增減線段,並對改變後的圖形作一些圖形性質的詢問 - 如 ”連結性”、”最小展開樹”、”平面性” 等 – 此類的問題我們稱作 “動態圖形問題”。 其中,”在圖形G中,點v和點w是連結的嗎? ” 或 “圖形G是連結的嗎?” 這類問題是屬於 “動態連結問題”。此類問題若能容許線段增加和減少,我們稱之為”全動態”。若只容許線段增加,我們稱為 ”遞增式”。同樣的,若只容許線段減少,就稱之為”遞減式”。 有效率的動態圖形演算法已發現在 “通訊網路”,”CAD”,”資料庫系統”,”邏輯程式設計”,”遞增式資料流量分析”,甚至”計算生物學”都有應用。而全動態以及遞增式圖形問題已有許多人做了廣泛的研究,也得到不錯的結果。在此篇碩士論文中,焦點放在遞減式的連結問題。提供了一個演算法,需要O(n) 的前置處理時間及空間,和O(log n / log log n) 的詢問時間及資料結構更新時間。
A dynamic graph problem is to maintain a graph G=(V, E), where G may be updated by insertion and deletion of edges and queries concerning certain properties of G may be asked. For the dynamic connectivity problem, the queries are of the form: “Are vertices v and w connected in G ?” or “Is G connected?” A dynamic graph problem is fully dynamic if both insertions and deletions of edges are allowed. The problem is incremental if only insertions are allowed, and decremental if only deletions are allowed. Efficient dynamic graph algorithms have many applications in communication networks, computer-aided design, database systems, logic programming, incremental data flow analysis, and computational biology.
In this thesis, the decremental dynamic connectivity problem in outerplanar graphs is studied. An efficient algorithm is presented. The presented algorithm requires O(n) space. After an O(n) time preprocessing, each edge deletion and connectivity query can be done in O(log n / log log n) time.
[1] D. Alberts and M. R. Henzinger, “Average-Case Analysis of Dynamic Graph Algorithms,” Algorithmica, Vol.20, pp.31-60, 1998.
[2] B. Alpern, R. Hoover, B. Rosen, P. Sweeney, and F. K. Zadeck, “Incremental Evaluation of Computational Circuits,” Proceeding of 1st Annual ACM-SIAM Symp. on Discrete Algorithm , pp.32-42, 1990.
[3] S. Alstrup, T. Husfeldt, and T. Rauhe, “Marked ancestor problems,” In Proceeding 39th Annual Symposium on Foundations of Computer Science (FOCS'98), pp.534--543, 1998.
[4] S. Alstrup, J. P. Secher, and M. Spork, “Optimal on-line decremental connectivity in trees,” Information Processing Letter, Vol.64, pp.161-164, 1997.
[5] G. Ausiello and G. F. Italiano, “On-Line Algorithms for Polynomially Solvable Satifiability Problems,” The Journal of Logic Programming, Vol.10, pp.69-90, 1991.
[6] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, North-Holland, 1976.
[7] M. D. Carrol and B. G. Ryder, “Incremental Data Flow Analysis via Dominator and Attribute Updates,” Proceeding of 15th Annual ACM SIGACT-SIGPLAN Symposium On Principles of Programming languages, pp.274-284, 1988.
[8] D. Eppstein, “Incremental and decremental maintenance of planar width,” Journal of Algorithms , Vol.37, No.2, pp.570-577, 2000.
[9] D. Eppstein, Z. Galil, and G. F. Italiano, “Improved Sparsification,” Technical Report 93-20, Department of Information and Computer Science, University of California, Irvine, 1993.
[10] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig, “Sparsification – A technique for speeding up dynamic graph algorithms,” Journal of the ACM, Vol.44, No.5, 1997.
[11] D. Eppstein, Z. Galil, G. F. Italiano, and T. H. Spencer, “Separator based sparsification for dynamic planar graph algorithms,” Proceedings of 25th ACM Symposium on Theory of computing, pp.208-217, 1993
[12] D. Eppstein, G. F. Italiano, R. Tamassia, R. E. Tarjan, J. Westbrook, and M. Yung, “Maintenance of a minimum spanning forest in a dynamic planar graph,” Journal of Algorithms, Vol.13, pp.33-54, 1992.
[13] S. Even and Y. Shiloach, “An on-line edge-deletion problem,” Journal of the ACM, Vol.28, pp.1-4, 1981.
[14] G. N. Frederickson, “Data structures for on-line updating of minimum spanning trees,” with applications, SIAM Journal on Computing, Vol.14, No.4, pp.781-798, 1985.
[15] G. N. Frederickson, “Ambivalent data structures for dynamic 2-edge- connectivity and k smallest spanning tree," SIAM Journal on Computing, Vol.26, No.2, pp.484-538, 1997.
[16] M. L. Fredman and M. R. Henzinger, “Lower Bounds for fully dynamic connectivity problems in graphs,” Algorithmica, Vol.22, No.3, pp.351-362, 1998.
[17] M. L. Fredman and M. E. Saks. “The cell probe complexity of dynamic data structures,” In Proceeding of Twenty First Annual ACM Symposium on Theory of Computing, pp.345--354, 1989.
[18] H. N. Gabow and R. E. Tarjan, “A linear-time algorithm for a special case of disjoint set union,” Journal of Computer and System Science, Vol.30, No.2, pp.209-221, 1985.
[19] Z. Galil and G. F. Italiano, “Fully Dynamic Algorithms for 2-Edge Connectivity,” SIAM Journal on Computing, Vol.21, pp.1047-1069, 1992
[20] D. Giammarresi and G. F. Italiano, “Decremental 2- and 3-Connectivity on planar graphs,” Algorithmica, Vol.16, pp.263-287, 1996.
[21] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
[22] M. R. Henzinger, “Fully Dynamic Biconnectivity in Graphs,” Algorithmica, Vol.13, pp.503-538, 1995.
[23] M. R. Henzinger, “Fully Dynamic Cycle-Equivalence in Graphs,” Proceedings of the 35th Symposium on Foundations of Computer Science, pp.744-755, 1994
[24] M. R. Henzinger and V. King, “Fully dynamic 2-Edge Connectivity Algorithm in Polylogarithmic Time per Operation,” Technical Report SRC 1997-004a, Digital, 1997.
[25] M. R. Henzinger and V. King, “Randomized Fully Dynamic Graph Algorithms with Polylogarithmic Time per Operation,” Journal of the ACM, Vol.46, pp.502-516, 1999.
[26] M. R. Henzinger and M. Thorup, “Sampling to provide or to bound: With applications to fully dynamic graph algorithms,” Random Structures and Algorithms, Vol.11, pp.369-379, 1997.
[27] M. R. Henzinger, V. King, and T. Warnow, “Constructing a tree from homeomorphic subtrees, with applications to computational evolutionary biology”, Algorithmica, Vol.24, No.1, pp.1-13, 1999
[28] S. Kannan, T. Warnow, and S. Yooseph, “Computing the local consensus of trees,” SIAM Journal on computing, Vol.28, No.6, pp.1695-1724, 1998
[29] T. Lukovszki and W. Strothmann, “Decremental biconnectivity on planar graphs,” Technical report TR-RI-97-186, ALCOM-IT TR-192-97, University of Paderborn, Department of Computer Science, 1997
[30] P. B. Miltersen, S. Subramanian, J. S. Vitter, and R. Tamassia, “Complexity models for incremental computation,” Theoretical Computer Science, Vol.130, pp.203-236, 1994.
[31] H. Nagamochi and T. Ibaraki, “A Linear-Time Algorithm for Finding a Sparse k-connected Spanning Subgraph of a k-connected Graph,” Algorithmica, Vol.7, pp.583-596, 1992.
[32] Z. P. Nedev and P. T. Wood, “A Polynomial-Time Algorithm for Finding Regular Simple Paths in Outerplanar Graphs,” Journal of Algorithms, Vol.35, pp.235-259, 2000.
[33] T. Nishizeki and N. Chiba, Planar Graphs: Theory and Algorithms, North-Holland, Amsterdam, 1988.
[34] R. E. Tarjan, “Efficiency of a good but not linear set union algorithm,” Journal of the ACM, Vol.22, pp.215-225, 1975.
[35] M. Thorup, “Decremental Dynamic Connectivity,” Journal of Algorithms, Vol.33, pp.229-243, 1999.
[36] D. B. West, Introduction to Graph Theory, Prentice Hall, 1996
[37] M. Yannakakis, “Graph Theoretic Methods in Database Theory,” In Proceedings of the 9th ACM Symposium on Principles of Database Systems, pp.230-242, 1990.