簡易檢索 / 詳目顯示

研究生: 廖呈哲
Liao, Cheng-Jhe
論文名稱: 雙亞硝基鐵錯合物與超氧離子反應性之探討
Reactivity Study of Dinitrosyl Iron Complexes toward Superoxide
指導教授: 魯才德
Lu, Tsai-Te
口試委員: 廖文峯
Liaw, Wen-Feng
李位仁
Lee, Way-Zen
林嘉和
Lin, Chia-Her
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 88
中文關鍵詞: 雙亞硝基鐵錯合物超氧離子
外文關鍵詞: Dinitrosyl Iron Complexes, Superoxide
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在發炎環境下一氧化氮(Nitric oxide,NO)及超氧化物(Superoxide,O2-)會被大量製造,產生的過氧亞硝酸鹽(Peroxynitrite,ONOO-)會影響生物分子的結構,且過氧亞硝酸鹽跟許多疾病有著密不可分的關係,文獻中認為體內的血紅蛋白或肌球蛋白透過一氧化氮雙加氧(Nitric oxide dioxygenation,NOD)來進一步將一氧化氮轉成硝酸鹽,來避免過氧亞硝酸鹽造成的毒性。過去許多科學家嘗試利用金屬錯合物來模擬一氧化氮雙加氧活性中心的反應機制,然而雙亞硝基鐵錯合物作為體內的一氧化氮供體,過去並沒有文獻報導過雙亞硝基鐵錯合物與超氧化物的反應性,也因此我們認為這是一個很重要的研究方向。
    研究第一部分以[Fe2(μ-1,2-MePyr)2(NO)4](1)與O2-反應以及[Fe2(μ-1,2-MePyr)2(NO)4]- (1-red)與O2反應性探討為主,結果顯示以上兩個反應都會生成[(K-18-crown-6-ether)2(NO2)][Fe(μ-MePyr)4(μ-O)2(Fe(NO)2)4] (2-K2(NO2)),透過2-4-di-tert-butyl-phenol (DTBP)並沒有捕捉到DTBP硝化訊號,而晶體結構顯示此反應有亞硝酸根生成,判斷錯合物1及錯合物1-red有一氧化氮單加氧的活性。
    第二部分則以錯合物1-red結構的鑑定為主,與過去文獻已發表[Fe2(μ-SEt)2(NO)4] (3-red)比較,從晶體結構、IR光譜以及EPR光譜得知錯合物1-red是定域化的{Fe(NO)2}9-{Fe(NO)2}10雙亞硝基鐵錯合物,而錯合物3-red則為非定域化的{Fe(NO)2}9-{Fe(NO)2}10雙亞硝基鐵錯合物。
    第三部分則是鑑定[PPN][Fe(μ-MePyr)4(μ-O)2(Fe(NO)2)4](2-PPN)的電子結構組態,利用X光吸收光譜 (X-ray Absorption Spectroscopy,XAS)、電子順磁共振光譜(Electron Paramagnetic Resonance,EPR)確認了{Fe(NO)2}9的電子組態,穆斯堡光譜 (Mössbauer Spectroscopy)確認了錯合物2-PPN具有兩種不同的配位環境,強度約為4:1,錯合物2-PPN中心Fe原子為高自旋(high spin)之電子組態且沒有Spin crossover的現象。EPR、超導量子干涉儀(Superconducting Quantum Interference Device,SQUID)確認錯合物2-PPN結構中Fe原子彼此之間具有強反鐵磁性。針對錯合物2-PPN反應性探討,隨後利用化學還原發現錯合物2-PPN能夠被還原成錯合物1-red。
    第四部份則以[Fe2(μ-SEt)2(NO)4](3)與O2-反應以及錯合物3-red與O2反應性探討為主,結果顯示錯合物3 + O2-可生成錯合物3-red + O2,反之亦然。透過DTBP並沒有捕捉到DTBP硝化訊號,研究結果顯示,錯合物3以及錯合物3-red具有類似超氧化物歧化酶(Superoxide dismutase,SOD)的活性,比照過去文獻,並沒有針對任何金屬亞硝基錯合物與O2或O2-有類似的反應性。


    During the course of an inflammatory response, nitric oxide(NO) and superoxide(O2-) both are produced in quantities that surpass physiological condition. Subsequently, NO and O2- react to form peroxynitrite(ONOO-), which induce DNA damage, protein nitration, neurodegenerative diseases, to name but a few. For fear of toxicity from ONOO-, heme proteins like hemoglobin or myoglobin are known as ability to catalyze the dioxygenation of NO to produce the benign nitrate anion. Based on previous literature, a lot of scientists try to use metal-complexs to do biomimetic study about NO dioxygenation activity of heme proteins, nonetheless , there are not any research related to endogenous DNIC reactivity toward O2-. We think that it is a good direction for research.
    First, we try reactivities about [Fe2(μ-1,2-MePyr)2(NO)4] (1) + O2- and [Fe2(μ-1,2-MePyr)2(NO)4]- (1-red) + O2. Interestingly, both reactions will lead the formation of [(K-18-crown-6-ether)2(NO2)][Fe(μ-MePyr)4(μ-O)2(Fe(NO)2)4] (2-K2(NO2)), which seems to be the first pentanuclear DNIC. Further we use DTBP to check these two reactions don’t pass through DTBP nitration and Complex 2-K2(NO2) crystal structure shows nitrite formation. These results indicate that Complex 1 and Complex 1-red have NO monooxygenation activity.
    Second, we compare the structure between Complex 1-red and [Fe2(μ-SEt)2(NO)4]- (3-red). Although these structures both belong to {Fe(NO)2}9-{Fe(NO)2}10 DNIC, we can differentiate that Complex 1-red has localized electron structure, while Complex 3-red has delocalized electron structure from crystal structure, IR and EPR spectrum.
    Third, we use a lot of instruments to characterize Complex 2-PPN because of its structural specificity. XAS and EPR spectrums show that Complex 2-PPN has {Fe(NO)2}9 electron structure. Mössbauer spectrum confirms that Complex 2-PPN has two different coordinaton environments with the ratio 4 : 1. Besides, the center Fe is high-spin electron configuration without phenomenon of spin crossover happening. EPR and SQUID spectrums indicate strong antiferromagnetic coupling. Then we find that Complex 2-PPN can be reduced to Complex 1-red by chemical reduction .
    Finally, we try reactivities about [Fe2(μ-SEt)2(NO)4] (3) + O2- and Complex 3-red + O2. We find that Complex 3 + O2- lead formation of Complex 3-red + O2, and vice versa. Neither Complex 3 + O2- nor Complex 3-red + O2 demonstrate DTBP nitration. The results illustrate that Complex 3 and Complex 3-red have SOD-like activity. In comparison with literature, no metal-nitrosyl complexs have similar reactivity.

    摘要 I Abstract III Figure list VIII Scheme list X Table list XI Chart list XII 第一章 緒論 1 1-1一氧化氮(Nitric oxide,NO)及活性氮物質(Reactive nitrogen species,RNS) 1 1-2超氧化物歧化酶(Superoxide dismutase,SOD)、一氧化氮脫氧(Nitric oxide dioxygenation,NOD)及相關仿生研究 3 1-2-1 超氧化物歧化酶(Superoxide dismutase,SOD) 3 1-2-2 一氧化氮雙加氧(Nitric oxide dioxygenation,NOD) 4 1-2-3 Biomimetic heme complexes for NOD 5 1-2-4 Biomimetic non-heme complexes for NOD 6 1-3雙亞硝基鐵錯合物(Dinitrosyl iron complex,DNIC) 12 1-4 DNIC與O2反應機制探討 15 1-5 DNIC於生醫之應用 20 1-5-1 DNIC用於治療癌症之研究 20 1-5-2 DNIC用於治療高血壓之研究 22 1-5-3 DNIC用於治療糖尿病之研究 23 1-5-4 DNIC用於治療神經退化性疾病 23 1-5-5 DNIC用於延緩老化之研究 24 1-5-6 DNIC用於殺菌之研究 25 1-6 研究動機 26 第二章 實驗部分 27 2-1儀器 27 2-2藥品 29 2-3化合物之合成與鑑定 30 2-3-1 製備化合物[PPN][NO2]及[PPN][15NO2] 30 2-3-2 製備KC8 30 2-3-3 製備化合物[Na-18-crown-6-ether][Fe(CO)3(NO)]及[PPN][Fe(CO)3(NO)] 30 2-3-4 製備化合物[Fe2(μ-1,2-MePyr)2(NO)4](1) 31 2-3-5 製備化合物[(K-18-crown-6-ether)][Fe2(μ-1,2-MePyr)2(NO)4](1-red) 31 2-3-6 製備化合物[PPN][Fe(µ-MePyr)4(µ-O)2(Fe(NO)2)4](2) 32 2-3-7 製備化合物[Fe2(μ-SEt)2(NO)4](3) 32 2-3-8 製備[(K-18-crown-6-ether)][Fe2(μ-SEt)2(NO)4](3-red) 33 2-3-9 製備化合物[PPN][S5Fe(NO)2]以及[PPN]2[S5Fe(μ-S)2FeS5] 33 2-4化合物反應性測試 35 2-4-1 錯合物1與KO2反應性測試 35 2-4-2 錯合物1與O2反應性測試 35 2-4-3 錯合物1-red與O2反應性測試 36 2-4-4 錯合物2-K2(NO2)與KO2反應性測試 36 2-4-5 錯合物2-K2(NO2)與O2反應性測試 36 2-4-6 錯合物2-K2(NO2)與KC8反應性測試 37 2-4-7 錯合物3與KO2反應性測試 37 2-4-8 錯合物3與O2反應性測試 37 2-4-9 錯合物3-red與KO2反應性測試 38 2-4-10 錯合物3-red與O2反應性測試 38 2-5 EPR實驗樣品配置 39 2-5-1 EPR spin quantitation 39 2-5-2 EPR power dependent 39 2-6 N2O、NO2- 、O2- 、NO、・NO2生成之檢測 40 2-6-1 N2O的檢測及檢量線的配置 40 2-6-2利用Griess reagent進行NO2-的檢測及檢量線配置 40 2-6-3利用NBD-Cl進行O2-的檢測 41 2-6-4利用[PPN]2[Fe(SPh)4]進行NO的檢測 42 2-6-5利用DTBP進行・NO2的檢測 43 2-7晶體結構解析 44 2-7-1錯合物2-K2(NO2) (Cation: [(K-18-crown-6-ether)2(NO2)]+) 45 2-7-2錯合物2-PPN (Cation: PPN+) 45 第三章 結果與討論 48 3-1錯合物1與KO2的反應性探討 49 3-2化合物[K-18-crown-6-ether][Fe2(μ-1,2-MePyr)2(NO)4](1-red)的合成與鑑定 54 3-3錯合物1-red與O2反應性測試 57 3-4錯合物1與NO2-反應性測試 61 3-5 [Fe(μ-MePyr)4(μ-O)2(Fe(NO)2)4]-鑑定 64 3-6錯合物3與KO2反應性探討 73 3-6-1錯合物3與KO2反應 73 3-6-2錯合物3-red與O2反應 75 3-6-3錯合物3與KO2反應(持續吹氮氣) 76 3-6-4 NBD-Cl檢測O2-的生成 77 3-6-5錯合物3-red與KO2反應 78 3-6-6錯合物3與O2反應 79 第四章 結論 81 第五章 參考文獻 84

    1. Koshland Jr, D. E., The molecule of the year. Science 1992, 258 (5090), 1861-1862.
    2. Ignarro, L. J.; Fukuto, J. M.; Griscavage, J. M.; Rogers, N. E.; Byrns, R. E., Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate: comparison with enzymatically formed nitric oxide from L-arginine. Proceedings of the National Academy of Sciences 1993, 90 (17), 8103-8107.
    3. Groves, J. T.; Wang, C. C., Nitric oxide synthase: models and mechanisms. Current opinion in chemical biology 2000, 4 (6), 687-695.
    4. Hsiao, H.-Y.; Chung, C.-W.; Santos, J. H.; Villaflores, O. B.; Lu, T.-T., Fe in biosynthesis, translocation, and signal transduction of NO: toward bioinorganic engineering of dinitrosyl iron complexes into NO-delivery scaffolds for tissue engineering. Dalton Transactions 2019, 48 (26), 9431-9453.
    5. Grisham, M. B.; Jourd’Heuil, D.; Wink, D. A., I. Physiological chemistry of nitric oxide and its metabolites: implications in inflammation. American Journal of Physiology-Gastrointestinal and Liver Physiology 1999, 276 (2), G315-G321.
    6. Yun, K.-J.; Koh, D.-J.; Kim, S.-H.; Park, S. J.; Ryu, J. H.; Kim, D.-G.; Lee, J.-Y.; Lee, K.-T., Anti-inflammatory effects of sinapic acid through the suppression of inducible nitric oxide synthase, cyclooxygase-2, and proinflammatory cytokines expressions via nuclear factor-κB inactivation. Journal of agricultural and food chemistry 2008, 56 (21), 10265-10272.
    7. Sharma, J.; Al-Omran, A.; Parvathy, S., Role of nitric oxide in inflammatory diseases. Inflammopharmacology 2007, 15 (6), 252-259.
    8. Wink, D. A.; Mitchell, J. B., Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radical Biology and Medicine 1998, 25 (4-5), 434-456.
    9. PFEILSCHIFTER, J.; EBERHARDT, W.; HUMMEL, R.; KUNZ, D.; MÜHL, H.; NITSCH, D.; PLÜSS, C.; WALKER, G., Therapeutic strategies for the inhibition of inducible nitric oxide synthase—potential for a novel class of anti-inflammatory agents. Cell biology international 1996, 20 (1), 51-58.
    10. Sharma, S. K.; Schaefer, A. W.; Lim, H.; Matsumura, H.; Moënne-Loccoz, P.; Hedman, B.; Hodgson, K. O.; Solomon, E. I.; Karlin, K. D., A Six-Coordinate Peroxynitrite Low-Spin Iron (III) Porphyrinate Complex The Product of the Reaction of Nitrogen Monoxide (· NO (g)) with a Ferric-Superoxide Species. Journal of the American Chemical Society 2017, 139 (48), 17421-17430.
    11. Gerasimov, O. V.; Lymar, S. V., The yield of hydroxyl radical from the decomposition of peroxynitrous acid. Inorganic Chemistry 1999, 38 (19), 4317-4321.
    12. Radi, R., Nitric oxide, oxidants, and protein tyrosine nitration. Proceedings of the National Academy of Sciences 2004, 101 (12), 4003-4008.
    13. Pacher, P.; Beckman, J. S.; Liaudet, L., Nitric oxide and peroxynitrite in health and disease. Physiological reviews 2007, 87 (1), 315-424.
    14. Bafana, A.; Dutt, S.; Kumar, A.; Kumar, S.; Ahuja, P. S., The basic and applied aspects of superoxide dismutase. Journal of Molecular Catalysis B: Enzymatic 2011, 68 (2), 129-138.
    15. Borgstahl, G. E.; Parge, H. E.; Hickey, M. J.; Johnson, M. J.; Boissinot, M.; Hallewell, R. A.; Lepock, J. R.; Cabelli, D. E.; Tainer, J. A., Human mitochondrial manganese superoxide dismutase polymorphic variant Ile58Thr reduces activity by destabilizing the tetrameric interface. Biochemistry 1996, 35 (14), 4287-4297.
    16. Antonyuk, S. V.; Strange, R. W.; Marklund, S. L.; Hasnain, S. S., The structure of human extracellular copper–zinc superoxide dismutase at 1.7 Å resolution: insights into heparin and collagen binding. Journal of molecular biology 2009, 388 (2), 310-326.
    17. Gardner, P. R.; Gardner, A. M.; Martin, L. A.; Salzman, A. L., Nitric oxide dioxygenase: an enzymic function for flavohemoglobin. Proceedings of the National Academy of Sciences 1998, 95 (18), 10378-10383.
    18. Schopfer, M. P.; Mondal, B.; Lee, D.-H.; Sarjeant, A. A.; Karlin, K. D., Heme/O2/• NO nitric oxide dioxygenase (NOD) reactivity: phenolic nitration via a putative heme-peroxynitrite intermediate. Journal of the American Chemical Society 2009, 131 (32), 11304-11305.
    19. Kurtikyan, T. S.; Ford, P. C., Hexacoordinate oxy-globin models Fe (Por)(NH 3)(O 2) react with NO to form only the nitrato analogs Fe (Por)(NH 3)(η 1-ONO 2), even at∼ 100 K. Chemical Communications 2010, 46 (45), 8570-8572.
    20. Subedi, H.; Brasch, N. E., Mechanistic studies on the reaction of nitroxylcobalamin with dioxygen: evidence for formation of a peroxynitritocob (III) alamin intermediate. Inorganic chemistry 2013, 52 (19), 11608-11617.
    21. Yokoyama, A.; Han, J. E.; Cho, J.; Kubo, M.; Ogura, T.; Siegler, M. A.; Karlin, K. D.; Nam, W., Chromium (IV)–peroxo complex formation and its nitric oxide dioxygenase reactivity. Journal of the American Chemical Society 2012, 134 (37), 15269-15272.
    22. Kim, S.; Siegler, M. A.; Karlin, K. D., Peroxynitrite chemistry derived from nitric oxide reaction with a Cu (ii)–OOH species and a copper mediated NO reductive coupling reaction. Chemical Communications 2014, 50 (22), 2844-2846.
    23. Hong, S.; Kumar, P.; Cho, K. B.; Lee, Y. M.; Karlin, K. D.; Nam, W., Mechanistic Insight into the Nitric Oxide Dioxygenation Reaction of Nonheme Iron (III)–Superoxo and Manganese (IV)–Peroxo Complexes. Angewandte Chemie 2016, 128 (40), 12591-12595.
    24. Mondal, B.; Borah, D.; Mazumdar, R.; Mondal, B., Nitric oxide dioxygenase activity of a nitrosyl complex of Mn (II)-porphyrinate in the presence of superoxide: formation of a Mn (IV)-oxo species through a putative peroxynitrite intermediate. Inorganic Chemistry 2019, 58 (21), 14701-14707.
    25. Mazumdar, R.; Mondal, B.; Saha, S.; Samanta, B.; Mondal, B., Reaction of a {Co (NO)} 8 complex with superoxide: Formation of a six coordinated [CoII (NO)(O2–)] species followed by peroxynitrite intermediate. Journal of Inorganic Biochemistry 2022, 228, 111698.
    26. Kumar, P.; Lee, Y.-M.; Park, Y. J.; Siegler, M. A.; Karlin, K. D.; Nam, W., Reactions of Co (III)–nitrosyl complexes with superoxide and their mechanistic insights. Journal of the American Chemical Society 2015, 137 (13), 4284-4287.
    27. Butler, A. R.; Megson, I. L., Non-heme iron nitrosyls in biology. Chemical reviews 2002, 102 (4), 1155-1166.
    28. Toledo, J. C.; Bosworth, C. A.; Hennon, S. W.; Mahtani, H. A.; Bergonia, H. A.; Lancaster, J. R., Nitric Oxide-induced Conversion of Cellular Chelatable Iron into Macromolecule-bound Paramagnetic Dinitrosyliron Complexes∗. Journal of Biological Chemistry 2008, 283 (43), 28926-28933.
    29. Enemark, J.; Feltham, R., Principles of structure, bonding, and reactivity for metal nitrosyl complexes. Coordination Chemistry Reviews 1974, 13 (4), 339-406.
    30. Tung, C.-Y.; Tseng, Y.-T.; Lu, T.-T.; Liaw, W.-F., Insight into the Electronic Structure of Biomimetic Dinitrosyliron Complexes (DNICs): Toward the Syntheses of Amido-Bridging Dinuclear DNICs. Inorganic Chemistry 2021.
    31. Hung, M.-C.; Tsai, M.-C.; Lee, G.-H.; Liaw, W.-F., Transformation and structural discrimination between the neutral {Fe (NO) 2} 10 dinitrosyliron complexes (DNICs) and the anionic/cationic {Fe (NO) 2} 9 DNICs. Inorganic chemistry 2006, 45 (15), 6041-6047.
    32. Tran, N. G.; Kalyvas, H.; Skodje, K. M.; Hayashi, T.; Moënne-Loccoz, P.; Callan, P. E.; Shearer, J.; Kirschenbaum, L. J.; Kim, E., Phenol nitration induced by an {Fe (NO) 2} 10 dinitrosyl iron complex. Journal of the American Chemical Society 2011, 133 (5), 1184-1187.
    33. Banerjee, A.; Sen, S.; Paul, A., Theoretical Investigations on the Mechanistic Aspects of O2 Activation by a Biomimetic Dinitrosyl Iron Complex. Chemistry–A European Journal 2018, 24 (13), 3330-3339.
    34. Skodje, K. M.; Williard, P. G.; Kim, E., Conversion of {Fe (NO) 2} 10 dinitrosyl iron to nitrato iron (III) species by molecular oxygen. Dalton Transactions 2012, 41 (26), 7849-7851.
    35. Fitzpatrick, J.; Kalyvas, H.; Shearer, J.; Kim, E., Dioxygen mediated conversion of {Fe (NO) 2} 9 dinitrosyl iron complexes to Roussin's red esters. Chemical Communications 2013, 49 (49), 5550-5552.
    36. Lu, S.; Chiou, T.-W.; Li, W.-L.; Wang, C.-C.; Wang, Y.-M.; Lee, W.-Z.; Lu, T.-T.; Liaw, W.-F., Dinitrosyliron Complex [(PMDTA) Fe (NO) 2]: Intermediate for Nitric Oxide Monooxygenation Activity in Nonheme Iron Complex. Inorganic Chemistry 2020, 59 (12), 8308-8319.
    37. Stupina, T.; Balakina, A.; Kondrat’eva, T.; Kozub, G.; Sanina, N.; Terent’ev, A., NO-donor nitrosyl iron complex with 2-aminophenolyl ligand induces apoptosis and inhibits NF-κB function in HeLa cells. Scientia pharmaceutica 2018, 86 (4), 46.
    38. Sung, Y.-C.; Jin, P.-R.; Chu, L.-A.; Hsu, F.-F.; Wang, M.-R.; Chang, C.-C.; Chiou, S.-J.; Qiu, J. T.; Gao, D.-Y.; Lin, C.-C., Delivery of nitric oxide with a nanocarrier promotes tumour vessel normalization and potentiates anti-cancer therapies. Nature nanotechnology 2019, 14 (12), 1160-1169.
    39. Huang, H.-C.; Sung, Y.-C.; Li, C.-P.; Wan, D.; Chao, P.-H.; Tseng, Y.-T.; Liao, B.-W.; Cheng, H.-T.; Hsu, F.-F.; Huang, C.-C., Reversal of pancreatic desmoplasia by a tumour stroma-targeted nitric oxide nanogel overcomes TRAIL resistance in pancreatic tumours. Gut 2021.
    40. Chazov, E. I.; Rodnenkov, O. V.; Zorin, A. V.; Lakomkin, V. L.; Gramovich, V. V.; Vyborov, O. N.; Dragnev, A. G.; Timoshin, А. А.; Buryachkovskaya, L. I.; Abramov, A. A., Hypotensive effect of Oxacom® containing a dinitrosyl iron complex with glutathione: animal studies and clinical trials on healthy volunteers. Nitric Oxide 2012, 26 (3), 148-156.
    41. Gosteev, A. I.; Zorin, A.; Rodnenkov, O.; Dragnev, A.; Chazov, E., Hemodynamic effects of the synthetic analogue of endogenous nitric oxide (II) donors a dinitrosyl iron complex in hypertensive patients with uncomplicated hypertensive crisis. Terapevticheskii arkhiv 2014, 86 (9), 49-55.
    42. Hong, Y.-H.; Narwane, M.; Liu, L. Y.-M.; Huang, Y.-D.; Chung, C.-W.; Chen, Y.-H.; Liao, B.-W.; Chang, Y.-H.; Wu, C.-R.; Huang, H.-C., Enhanced Oral NO Delivery through Bioinorganic Engineering of Acid-Sensitive Prodrug into a Transformer-like DNIC@ MOF Microrod. ACS Applied Materials & Interfaces 2022.
    43. Chen, Y.-J.; Wu, S.-C.; Wang, H.-C.; Wu, T.-H.; Yuan, S.-S. F.; Lu, T.-T.; Liaw, W.-F.; Wang, Y.-M., Activation of angiogenesis and wound healing in diabetic mice using NO-delivery dinitrosyl iron complexes. Molecular pharmaceutics 2019, 16 (10), 4241-4251.
    44. Wu, C.-R.; Huang, Y.-D.; Hong, Y.-H.; Liu, Y.-H.; Narwane, M.; Chang, Y.-H.; Dinh, T. K.; Hsieh, H.-T.; Hseuh, Y.-J.; Wu, P.-C., Endogenous Conjugation of Biomimetic Dinitrosyl Iron Complex with Protein Vehicles for Oral Delivery of Nitric Oxide to Brain and Activation of Hippocampal Neurogenesis. JACS Au 2021.
    45. Huang, H.-W.; Lin, Y.-H.; Lin, M.-H.; Huang, Y.-R.; Chou, C.-H.; Hong, H.-C.; Wang, M.-R.; Tseng, Y.-T.; Liao, P.-C.; Chung, M.-C., Extension of C. elegans lifespan using the· NO-delivery dinitrosyl iron complexes. JBIC Journal of Biological Inorganic Chemistry 2018, 23 (5), 775-784.
    46. Chung, C.-W.; Liao, B.-W.; Huang, S.-W.; Chiou, S.-J.; Chang, C.-H.; Lin, S.-J.; Chen, B.-H.; Liu, W.-L.; Hu, S.-H.; Chuang, Y.-C., Magnetic Responsive Release of Nitric Oxide from an MOF-Derived Fe3O4@ PLGA Microsphere for the Treatment of Bacteria-Infected Cutaneous Wound. ACS Applied Materials & Interfaces 2022.
    47. Lu, T.-T.; Tsou, C.-C.; Huang, H.-W.; Hsu, I.-J.; Chen, J.-M.; Kuo, T.-S.; Wang, Y.; Liaw, W.-F., Anionic Roussin’s red esters (RREs) syn-/anti-[Fe (µ-SEt)(NO) 2] 2−: the critical role of thiolate ligands in regulating the transformation of RREs into dinitrosyl iron complexes and the anionic RREs. Inorganic chemistry 2008, 47 (13), 6040-6050.
    48. Olojo, R.; Xia, R.; Abramson, J., Spectrophotometric and fluorometric assay of superoxide ion using 4-chloro-7-nitrobenzo-2-oxa-1, 3-diazole. Analytical biochemistry 2005, 339 (2), 338-344.
    49. Lu, T.-T.; Chiou, S.-J.; Chen, C.-Y.; Liaw, W.-F., Mononitrosyl tris (thiolate) iron complex [Fe (NO)(SPh) 3]-and dinitrosyl iron complex [(EtS) 2Fe (NO) 2]-: Formation pathway of dinitrosyl iron complexes (DNICs) from nitrosylation of biomimetic rubredoxin [Fe (SR) 4] 2-/1-(R= Ph, Et). Inorganic chemistry 2006, 45 (21), 8799-8806.
    50. Piñero, D.; Baran, P.; Boca, R.; Herchel, R.; Klein, M.; Raptis, R. G.; Renz, F.; Sanakis, Y., A Pyrazolate-Supported Fe3 (μ3-O) Core: Structural, Spectroscopic, Electrochemical, and Magnetic Study. Inorganic chemistry 2007, 46 (26), 10981-10989.
    51. Dziobkowski, C. T.; Wrobleski, J. T.; Brown, D. B., Magnetic properties and Moessbauer spectra of several iron (III)-dicarboxylic acid complexes. Inorganic Chemistry 1981, 20 (3), 671-678.
    52. Chen, Y.-L.; Yang, D.-P., Mössbauer effect in lattice dynamics: experimental techniques and applications. John Wiley & Sons: 2007.

    QR CODE