簡易檢索 / 詳目顯示

研究生: 呂承岳
Lu, Cheng-Yueh
論文名稱: 利用連續照光製作簡單結構之反式有機太陽能電池
Simplified Inverted Organic Solar Cells Fabricated by Light Soaking
指導教授: 洪勝富
Horng, Sheng-Fu
口試委員: 孟心飛
冉曉雯
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 64
中文關鍵詞: 有機太陽能電池反式太陽能電池高分子連續照光無電子傳輸層
外文關鍵詞: organic solar cells, inverted solar cells, polymer, light soaking, hole-transport layer free
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來因為能源的問題日益嚴重,替代能源的發展逐漸成為全球各國重視的議題。現今太陽能電池發展備受矚目,有機太陽能電池具有低成本、可撓性、輕便易攜、簡單製程步驟等優勢,未來極具潛力運用於商業用途。製程的簡化尤為重要,期以成本降低、製程迅速等有利因素,幫助有機太陽能電池發展。
    本研究以簡單反式結構有機太陽能電池,使用溶液製程,主動層材料選用塊材異質接面(bulk heterojunction, BHJ)系統,本研究中主動層材料選擇上,主要為P3HT(poly(3-hexythiophene))及PCBM([6,6]-phenyl C61-butyric acid methyl ester)混合,溶劑使用為鄰-二氯苯(DCB),並由此延伸嘗試不同的主動層與電洞傳輸層材料。然利用照光後,本研究結構ITO/P3HT:PCBM/PEDOT:PSS/Ag之元件能量轉換效率由0.89%可提升至4.06%(AM1.5G 100 mW/cm2)。由X-Ray光電子能譜分析顯示在主動層表面有更多的成分聚集於介面,主動層材料分佈變化的結果與元件的電流密度-電壓量測相關,造成元件的特性表現提升。其元件特性為不可逆現象,且相較於標準元件有更優異的生命期維持元件效率。由研究結果顯示,此連續照光效應可運用於不同的主動層材料系統,藉此可製程更簡單且更低廉的有機太陽電池元件。


    In recent years, the problem of non-renewable energy resource is becoming more serious. As a result, governments around the world at the moment pay much more attention to the development of alternative energy. Now, the organic solar cells is noted for mechanical flexibility, light weight, especially its simple and low-cost manufacturing. Those potential have made organic solar cells more promising in commercial applications.
    In this work, we report an inverted organic solar cells which required no electron selective layer were fabricated. The active layer was a bulk heterojunction (BHJ) consisting of blending of poly(3-hexylthiophene)(P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) in 1, 2-Dichlorobenzene. We found that ITO/P3HT:PCBM/PEDOT:PSS/Ag device improved the PCE from 0.89% to 4.06%(AM1.5G 100 mW/cm2). X-Ray photoelectron spectroscopy revealed further segregation in surface composition at the interface and the result were correlated to the current density-voltage measurement. We also extend this work to study a variety of materials as active and hole-transport layers in the inverted solar cells.
    The light soaked device were found the improvement irreversibly and excellent performance work in lifetime compared to conventional device. As a result, light soaking could be a cost-effective method to achieve efficient inverted organic solar cells.

    摘要 I Abstract II 致謝 IV 目錄 IX 圖表目錄 XI 第一章 緒論 1 1.1 研究背景 1 1.1.1 前言 1 1.1.2 太陽能電池產業發展趨勢 1 1.1.3 有機太陽能電池發展 3 1.2 研究動機 6 1.2.1 有機太陽能電池優勢 6 1.2.2 P3HT:PCBM混合之有機共軛高分子太陽能電池 7 1.3 文獻回顧 7 1.4 論文架構 11 第二章 實驗原理及材料介紹 12 2.1 太陽能電池元件概述 12 2.1.1 基礎原理 12 2.1.2 基本參數 15 2.1.3 操作原理 18 2.2 有機太陽能電池材料特性介紹 21 2.2.1 共軛高分子材料 21 2.2.2 電洞傳輸層材料 24 2.3 有機太陽能電池元件結構 25 2.3.1 能帶理論 25 2.3.2 本論文研究之元件結構及能帶圖 26 第三章 實驗方法及流程 28 3.1 實驗流程介紹 28 3.2 ITO玻璃基板圖樣化 28 3.2.1 玻璃基板切割清洗 28 3.2.2 乾式光阻之貼附 29 3.2.3 曝光 29 3.2.4 顯影 29 3.2.5 蝕刻 30 3.3 圖樣化ITO玻璃基板清潔 30 3.4 反相結構元件高分子成膜 31 3.4.1 主動層成膜 31 3.4.2 電洞傳輸層成膜 32 3.4.2.a 電洞傳輸層I- PEDOT:PSS 32 3.4.2.b 電洞傳輸層II-三氧化鉬(MoO3) 33 3.5 電極蒸鍍 33 3.6 封裝 34 3.7 量測系統 35 第四章 實驗結果及討論 36 4.1 持續照光( light soaking )之元件 36 4.1.1 照光時間之元件影響 36 4.1.2 熱效應對元件的影響 39 4.1.3 光效應對元件的影響 41 4.1.4 嘗試正結構持續照光 44 4.2 XPS材料分析 45 4.3 AFM材料分析 48 4.4 主動層( P3HT:PC61BM )不同膜厚討論材料分佈 49 4.5 持續照光處理後元件Life time 51 4.6 不同主動層材料之持續照光討論 54 4.6.1 置換主動層之accepter (PC71BM)材料 54 4.6.2 置換主動層之donor(PTB1)材料 55 4.7 不同電洞傳輸層材料之持續照光討論 57 4.7.1 使用三氧化鉬(MoO3)取代原因 57 4.7.2 縮短持續照光時間之優勢 58 第五章 實驗總結及未來發展 60 參考文獻 61

    [1] D. M. Chapin, C. S. Fuller, and G.L. Pearson, “A New Silicon pn Junction Photocell for Converting Solar Radiation into Electrical Power,” J. Appl. Phys. 25, 676 (1954).
    [2] Zhao, A. Wang, and M. A. Green, “24.5% efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates,” Prog. Photovolt. : Res. Appl. 7, 471 (1999).
    [3] KRI Report No.8:Solar Cells, February 2005
    [4] M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hason, and R. Noufi, “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells,” Prog. Photovolt.: Res. Appl. 7, 311 (1999).
    [5] K. M. Coakley,Wudl and M. D. McGehee,“Conjugated polymer photovoltaic cells,” Chem. Mater. 16, 4533 (2004).
    [6] Harald Hoppe, and Niyazi Serdar Sariciftci,“Organic solar cell: An review,”J. Mater. Res., Vol. 19, No. 7, Jul 2004.
    [7] Kyungkon Kim, Jiwen Liu, Manoj A. G. Namboothiry, and David L. Carroll, “Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics,” Appl. Phys. Lett. 90, 163511 (2007).
    [8] C. W. Tang, “Two-layer organic photovoltaic cell,” Appl. Phys. Lett. 48, 183
    (1986)
    [9] B. O’Regan and M. A. Grätzel, “A low cost, high efficiency solar cell based on
    dye-sensitized colloidal TiO2 films,” p Nature 353, 737 (1991).
    [10] G. Yu, K. Pakbaz, and A. J. Heeger, “Semiconducting polymer diodes: Large size low cost photodetectors with excellent visible-ultraviolet sensitivity,” Appl. Phys. Lett. 64, 3422 (1994).
    [11] W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater. 15, 1617 (2005)
    [12] Hsiang-Yu Chen, Jianhui Hou1, Shaoqing Zhang, Yongye Liang, Guanwen Yang, Yang Yang, Luping Yu3, YueWu1 and Gang Li,” Polymer
    solar cells with enhanced open-circuit voltage and efficiency,” Nature Photonics 3, 649 - 653 (2009)
    [13] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nat. Mater. 4, 864 (2005).
    [14] G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, and Y. Yang, Adv. Funct. Mater. 17, 1636 (2007).
    [15] C. Melzer, E. J. Koop, V. D. Mihailetchi, and P. W. M. Blom, Adv. Funct. Mater. 14, 865 (2004).
    [16] G. Li, C.-W. Chu, V. Shrotriya, J. Huang, Y. Yang, “Efficient inverted solar cells,” Appl. Phys. Lett. 88, 253503 (2006).
    [17] C. Waldaulf, M. Morana, P. Denk, P. Schilinsky, K. Coakley, S. A. Choulis, and C. J. Brabec, Appl. Phys. Lett. 89, 233517 (2006).
    [18] Takayuki Kuwabara, Taketoshi Nakayama, Konosuke Uozumi, Takahiro Yamaguchi, Kohshin Takahashi, “Highly durable inverted-type organic solar cell using amorphous titanium oxide as electron collection electrode inserted between ITO and organic layer” Solar Energy Materials & Solar Cells 92 (2008) 1476– 1482
    [19] Steven K. Hau, Hin-Lap Yip, Nam Seob Baek, Jingyu Zou, Kevin O’Malley,and
    Alex K.-Y. Jen , “Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer”,Appl. Phys. Lett. 92, 253301 (2008)
    [20] R.N. Marks, J.J.M. Halls, D.D.C. Bradley, R. H. Friend, A. B. Holmes, J. Phys.:Condens. Matter. 6, 1379 (1994)
    [21] C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, M.T. Rispens, L. Sanchez, J. C. Hummelen, and T Fromherz, “ The influence of materials work function on the open circuit voltage of plastic solar cells,” Thin Solid Film, 403-404,368 (2002).
    [22] H. Kim, S-H. Jin, H. Suh, and K. Lee, “Origin of the open circuit voltage in conjugated polymer-fullerene photovoltaic cells,” In Organic Photovoltaics IV, edited by Z.H. Kafafi, and P.A. Lane, Proceedings of the SPIE, Vol. 5215, (SPIE, Bellingham, WA, 2004), p. 111.
    [23] C. J. Brabec, S. E. Shaheen, C. Winder, and N. S. Sariciftci, “Effect of LiF/metal electrodes on the performance of plastic solar cells,” Appl. Phys. Lett. 80, 1288 (2002)
    [24] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. De Leeuw, “ Two-dimensional charge transport in self-organized, high-mobility conjugated polymers,” Nature, 401, 685 (1999).
    [25] Yongye Liang, Danqin Feng, Yue Wu, Szu-Ting Tsai, Gang Li, Claire Ray and Luping Yu “Highly Efficient Solar Cell Polymers Developed via Fine-Tuning of Structural and Electronic Properties” J. Am. Chem. Soc., 2009, 131 (22), pp 7792–7799
    [26] Yongye Liang, Zheng Xu, Jiangbin Xia, Szu-Ting Tsai, Yue Wu, Gang Li, Claire Ray, Luping Yu, “For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%” Adv. Mater. 2010, 22, 1–4.
    [27] J. C. Hummelen, B. W. Knight, F. Lepeq, F. Wudl, J. Yao, and C. L. Wilkins, “Preparation and Characterization of Fulleroid and Methanofullerene Derivatives,” J.Org. Chem. 60, 532 (1995)
    [28] E. J. Meijer, D. M. de Leeuw, S. Setayesh, E. V. Veenendaal, B. H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, T. M. Klapwijk. Nat. Mater. 2, 678 (2003)
    [29] Jen-Hsien Huang, Chuan-Pei Lee, Zhong-Yo Ho, Dhananjay Kekuda, Chih-Wei Chu and Kuo-Chuan Ho, “Enhanced spectral response in polymer bulk heterojunction solar cells by using active materials with complementary spectra” Solar Energy Materials & Solar Cells 94 (2010) 22–28.
    [30] K. J. Reynolds, J. A. Barker, N. C. Greenham, R.H. Friend, and G. L. Frey,“Inorganic solution-processed hole-injecting and electron-blocking layers in polymer light-emitting diodes,”J. Appl. Phys. Vol. 92, No. 12, 15 December 2002.
    [31] Jinsong Huang, Gang Li, and Yang Yang, “A Semi-transparent Plastic Solar Cell Fabricated by a Lamination Process,” Adv. Mater. 2008, 20, 415–419.
    [32] H. Schmidt, K. Zilberberg, S. Schmale, H. Flügge,T. Riedl,and W. Kowalsky, “Transient characteristics of inverted polymer solar cells using titaniumoxide interlayers”,Appl. Phys. Lett. 96, 243305 (2010)
    [33] Yinhua Zhou, Hyeunseok Cheun, Willliam J. Potscavage, Jr, Canek Fuentes-Hernandez, Sung-Jin Kim and Bernard Kippelen “Inverted organic solar cells with ITO electrodes modified with an ultrathin Al2O3 buffer layer deposited by atomic layer deposition” J. Mater. Chem., 2010, 20, 6189-6194
    [34] M. T. Lloyd, D. C. Olson, P. Lu, E. Fang, D. L. Moore, M. S. White,M. O. Reese, D. S.GinleyandJ. W.P.Hsu, J.Mater.Chem., 2009, 19, 7638.
    [35] Jianchang Guo, Yongye Liang, Jodi Szarko, Byeongdu Lee, Hae Jung Son, Brian S. Rolczynski, Luping Yu, and Lin X. Chen, “Structure, Dynamics, and Power Conversion Efficiency Correlations in a New Low Bandgap Polymer: PCBM Solar Cell” J. Phys. Chem. B 2010, 114, 742–748.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE