研究生: |
慕尼許 Muthaiyan Shanmugam, Muniesh |
---|---|
論文名稱: |
透過細胞骨架與突觸前驅因子調節軸突的快速運輸 Fast axonal transport regulation by cytoskeletal and synaptic precursor factors |
指導教授: |
王歐力
Wagner, Oliver |
口試委員: |
彭明德
Perng, Ming-Der 張壯榮 Chang, Chuang-Rung 黃兆祺 Hwang, Eric 歐展言 Ou, Chan-Yen |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 148 |
中文關鍵詞: | 秀麗隱桿線蟲 、軸突運輸 、UNC-104 、SYD-2 、PTP-3 、突觸囊泡 、中間絲蛋白 、粒線體運輸 、神經絲蛋白 、TAG-63 |
外文關鍵詞: | C. elegans, axonal transport, UNC-104, SYD-2, PTP-3, synaptic vesicle, intermediate filament, mitochondrial transport, neurofilament, TAG-63 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1. 磷酸酶PTP-3/LAR通過調控SYD-2/Liprin-α分子內折疊抑制UNC-104/KIF1A的激活
細胞胞器、蛋白質與其他胞內貨物的運輸,以及貨物在胞內特定位置的停泊,是透過使用細胞骨架中微管 (MT)與肌動蛋白纖維軌道,由馬達蛋白如驅動蛋白、動力蛋白與肌球蛋白來執行。馬達蛋白的正常運作,對於維持細胞的功能、極性、發育、遷移與分裂等至關重要。驅動蛋白家族(KIF)的馬達蛋白是正端導向的,它們將貨物(如突觸囊泡、粒線體、RNA顆粒等)從微管的負端運輸到正端。KIF1A(即C. elegans中的UNC-104),屬於驅動蛋白-3家族,已知能夠在快速的軸突運輸機制中運輸STVs(運輸蛋白質突觸囊泡)。調節驅動馬達蛋白的機制包含”選擇性補充”、”調和活動”和”拔河”。目前還尚未完全釐清驅動蛋白的調控。一種已知的機轉是透過與小的轉接蛋白的交互作用,可以活化驅動蛋白。Liprin-α(即C. elegans中的SYD-2),近期顯示它透過本身的SAM結構域與UNC-104的FHA結構域交互作用來活化UNC-104。而Liprin-α/SYD-2作為LAR/PTP-3的受質(它是一種白血球共同抗原相關的受體蛋白酪氨酸磷酸酶),已知會與磷酸化的liprin-α作用。在C. elegans中,缺乏ptp-3會導致SYD-2的Y741被過度磷酸化。因此,本論文中假設PTP-3調控SYD-2分子內摺疊來激活UNC-104。
事實上,在CoIP試驗中,發現了UNC-104與SYD-2在缺乏PTP-3的線蟲裂解液中的交互作用增加了。目前已知SYD-2會經歷分子內折疊,並且所使用的FRET分析揭露SYD-2在ptp-3的突變體中,主要是以開放式的結構存在。不可磷酸化的SYD-2 (Y741F)在ptp-3的突變體中過度表現,導致大部分變為摺疊的SYD-2,另外磷酸模擬的SYD-2 (Y741E)突變體,則主要導致在開放式的結構中。重要的是,可以在 運輸減少的神經元的軸突和突觸中觀察到SNB-1 STV被保留在細胞體內,且可能是ptp-3突變體中SYD-2與UNC-104表現量減少的結果。此外,已知子神經元束軸突上UNC-104馬達蛋白聚集(密度),然而在syd-2突變體,馬達蛋白聚集顯著地減少。ptp-3突變體中,UNC-104與其貨物(SNB-1 STVs)的順行運輸速度顯著增加而停滯時間減少。即使馬達蛋白和貨物的速度都增加了,淨移動距離並無顯著差異,可能是因方向改變的增加造成拔河現象。最後,上位分析顯示,對於UNC-104馬達蛋白活性的調控,PTP-3是SYD-2的上游。以上結果顯示了,缺乏PTP-3磷酸酶促使SYD-2去磷酸化,進而導致開放的SYD-2構型增加,暴露其與UNC-104交互作用的位點(如C端SAM結構域),以致馬達蛋白活性增加和快速軸突運輸的增加。
2. 中間絲蛋白 IFB-1的缺陷負面影響秀麗隱桿線蟲(C. elegans)的神經發育、化感器感應神經元中粒線體之定位和運作
粒線體是ATP的合成、鈣離子調節與細胞凋亡的重要胞器。粒線體的長距離雙向運輸倚賴的是微管與微管馬達蛋白;而短距離運輸和停泊是依賴肌動蛋白與肌動馬達蛋白。不過,中間絲蛋白(IFs)不具有相關的馬達蛋白。此外,且很難釐清神經元的IFs與粒線體的移動性是否有關連。以下的研究中,旨在了解在神經元內粒線體的運輸與中間絲蛋白的關聯。在C. elegans 11種細胞質內中間絲家族的蛋白中, 對於IFB-1最感興趣,因為表現在感覺神經元的次神經元中,並與IFA蛋白形成一個至關線蟲活性的強制的異聚物。IFB-1的缺陷會導致輕微的染料填充缺陷、顯著的趨化性缺陷與生命週期的縮短。在ifb-1(ju71)突變體中,發生粒線體運輸上的缺陷即樹突的發育不良,導致在樹突中發生錯誤的定位。此外,突變體中耗氧量減少還揭示了突變體的粒線體功能上的缺陷。重要的是,共定位與蛋白質體外結合實驗中,顯示了IFB-1與粒線體存在物理性的交互作用。綜上所述,我們提出了一個模型:中間絲蛋白可做為粒線體在C. elegans神經元中運輸過程重要的臨時停泊站。
3. C. elegans的同源神經絲狀蛋白TAG-63可能用於穩定軸突運輸中微管上的突觸囊泡
目前C. elegans的神經絲狀蛋白尚未被鑑定出來,使這種模式生物無法用於研究神經絲相關的神經疾病。於本實驗室近期研究中將暫定為gene-63 (TAG-63)鑑定為C. elegans可能的同源神經絲的三聯肽,透過電子顯微鏡能觀察到TAG-63可形成10 nm的纖維,同時擁有神經絲的重多肽與輕多肽的結構。近期的研究藉由分析基因剔除tag-63的突變體可觀察的表徵使其成為研究神經絲狀蛋白疾病的模式生物。而確實能觀察到tag-63(ok471)的突變線蟲體延遲產卵,並對於觸碰反應有缺陷及減少的咽喉部蠕動。細胞層面的研究則指出,使用購買的人類NEFH抗體進行免疫染色,可以觀察到TAG-63::GFP與免疫染色的螢光訊號共定位。此外,基因減量tag-63抑制了NEFH的免疫染色結果。使用丙烯酰胺處理C. elegans後導致TAG-63表達增加,以及神經元結構的改變,與現存的研究資料一致。另外,在運動記錄器的分析顯示在基因剔除tag-63的動物中,表現出更少的驅動蛋白-3 UNC-104和STV移動的特性。最後,UNC-104馬達蛋白、STV貨物與TAG-63的共定位可透過丙烯酰胺的處理減低。因此,鑑定TAG-63作為同源神經絲狀蛋白,可以作為研究神經絲相關疾病的線蟲模型提供更多可能性。
1.Suppression of UNC-104/KIF1A activation by PTP-3/LAR phosphatase via the regulation of SYD-2/Liprin-α intramolecular folding
Transport of cellular organelles, proteins, and other cellular cargos, as well as docking of cargos at a particular location is carried out by motor proteins such as kinesin, dynein, and myosin, employing cytoskeletal microtubule (MT) and actin filament tracks. Proper function of motor proteins are essential for the maintenance of cellular function, polarity, development, migration, division, etc. Kinesin family (KIF) of motors are plus-end directed, i.e., they transport cargos (such as synaptic vesicles, mitochondria, RNA granules, etc.) from the minus-ends of MT to their plus-ends. KIF1A, also known as UNC-104 in C. elegans, belongs to the kinesin-3 family and is known to shuttle STVs (synaptic vesicle protein transport vesicles) in the fast axonal transport machinery. Several mechanisms for regulation of kinesin motor proteins exist encompassing “selective recruitment”, “coordinated activity” and “tug-of-war”. Yet a complete understanding of kinesin regulation is far from reach. One identified mechanism is kinesin activation by its interaction with small adaptor proteins. Liprin-α, SYD-2 in C. elegans, has been recently shown to interact with UNC-104’s FHA domain via its SAM domain to activate UNC-104. Liprin-α/SYD-2 is a substrate of LAR/PTP-3 (leukocyte common antigen-related receptor protein tyrosine phosphatase) known to interact with phosphorylated liprin-α. In C. elegans, lack of ptp-3 results in hyperphosphorylation of SYD-2 at tyrosine 741. In this doctoral thesis, it is hypothesized that intramolecular folding of SYD-2 is regulated by PTP-3 to activate UNC-104.
Indeed, using CoIP assays, an increased interaction between UNC-104 and SYD-2 in lysates of worms lacking PTP-3 was identified. SYD-2 is known to undergo intramolecular folding and employed intramolecular FRET analysis revealed that SYD-2 predominantly exists in an open conformation state in ptp-3 mutants. A non-phosphorylatable SYD-2 Y741F overexpressed in ptp-3 mutant worms, resulted in predominately folded conformation states of SYD-2 while a phosphomimicking SYD-2 Y741E variant resulted predominantly in open conformational states. Critically, SNB-1 STV cargo retention in somas with decreased trafficking qualities in axons and synapses of neurons were observed, likely as a result of reduced expression of SYD-2 and UNC-104 in ptp-3 mutants. Further, increased UNC-104 motor clustering (density) along axons of sub-lateral neuronal bundles were determined in ptp-3 mutants, however in syd-2 mutants, motor clustering was significantly reduced. Anterograde velocities of both UNC-104 and its cargo (SNB-1-containing STVs) significantly increased in ptp-3 mutants with reduced pausing duration. Interestingly, although speeds of both motor and cargo increased, net run-length of motor and cargo did not change significantly, likely due to increased tug-of-war events indicated by increased directional changes. Lastly, epistatic analysis revealed that PTP-3 is upstream of SYD-2 in regulating UNC-104’s motor activity. These results suggest that lack of PTP-3 phosphatases to dephosphorylate SYD-2 results in increased open SYD-2 conformations, exposing its UNC-104 interaction sites (such as the C-terminal SAM domains) leading to increased motor activation and concomitantly increased fast axonal transport events.
2.Depletion of intermediate filament protein IFB-1 negatively affects neural development, mitochondrial localization and its functionality in amphid sensory neurons of C. elegans
Mitochondria are essential cellular organelles for ATP synthesis, calcium buffering and apoptosis. Long-range bidirectional transport of mitochondria depends on microtubules and microtubule-based motor proteins, while short-range transport and docking mainly relies on actin and actin-based motors. However, intermediate filaments (IFs) do not possess associated motor proteins. Moreover, it is poorly understood whether a link between neuronal IFs and mitochondrial mobility exist. In the following study of Chapter II, the aim is to understand the role of IFs in intraneuronal mitochondrial transport. In C. elegans, among the 11 cytoplasmic IF family proteins, IFB-1 is of particular interest as it is expressed in a subset of sensory neurons and forms an obligate heteropolymer with one of the essential IFA proteins crucial for worm viability. Depletion of IFB-1 leads to mild dye-filling defect, significant chemotaxis defect and a significant reduction in life span. Mislocalization of mitochondria in dendrites of ifb-1(ju71) mutants indicate defects in mitochondrial transport, and dendrites in these mutants are also shorter. Additionally, functional defects of mitochondria can be observed in these mutants with reduced oxygen consumption. Lastly, colocalization and pull-down assay indicates the existence of physical interactions between mitochondria and IFB-1. Taken together, a model is proposed in which intermediate filaments may serve as crucial transient docking stations for mitochondria during their transport in the lengthy neurons of C. elegans.
3.TAG-63 is a neurofilament orthologue in C. elegans with a prospective function to stabilize microtubule-bound synaptic vesicles during axonal transport
Currently, no known neurofilament protein in C. elegans has been characterized, thus rendering this model organism ineffective to study neurofilament related neurological diseases. A recent study from my PI’s lab identified the temporarily assigned gene-63 (TAG-63) in C. elegans as a potential orthologue of the neurofilament triplet peptide. It has been shown that TAG-63 forms 10 nm filaments using electron microscopy, sharing structural features from both neurofilament heavy as well as from neurofilament light peptide. The present study analyses visible phenotypes of a tag-63 knockout mutant with the goal to use it as a model organism to study neurofilament-based diseases. Indeed, tag-63(ok471) mutant worms exhibit not only egg retention phenotypes but also defective touch responses along with reduced pharyngeal pumping. On the cellular level, the present study reports that TAG-63::GFP colocalizes with fluorescent signals gained from whole mount immunostaining using commercial human NEFH antibody. Moreover, knocking down tag-63 reduced the NEFH immunostaining. Treatment of worms with the NF-toxin acrylamide lead to an increase in TAG-63::GFP expression with concomitant structural changes in neurons consistent with similar reports from the literature. Furthermore, kymograph analysis shows reduced kinesin-3 UNC-104 and STV moving properties in tag-63 knockout animals. Lastly, UNC-104 motors and STV cargos clearly colocalize with TAG-63 which can be reduced when treating animals with acrylamide. In summary, identification of TAG-63 as a neurofilament orthologue protein can provide novel opportunities to develop crucial worm models to study neurofilament-related diseases.
Chapter I
1. Harvey Lodish, et al., Nerve cells, in Molecular Cell Biology. 2008, W. H. Freeman and Company: New York, USA.
2. Janmey, P.A., Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. The Journal of Cell Biology, 1991. 113(1): p. 155-160.
3. Harvey Lodish, et al., Cell organization and movement I: Microfilaments, in Molecular Cell Biology. 2008, W. H. Freeman and Company: New York USA.
4. Harvey Lodish, et al., Cell organization and movement II: Microtubules and intermediate filaments, in Molecular Cell Biology. 2008, W.H. Freeman and Company: New York, USA.
5. Kevenaar, J.T. and C.C. Hoogenraad, The axonal cytoskeleton: from organization to function. Front Mol Neurosci, 2015. 8: p. 44.
6. Cavalli, V., et al., Sunday Driver links axonal transport to damage signaling. J Cell Biol, 2005. 168(5): p. 775-87.
7. Kapitein, L.C., et al., Mixed microtubules steer dynein-driven cargo transport into dendrites. Curr Biol, 2010. 20(4): p. 290-9.
8. Ducommun Priest, M., et al., Dynein promotes sustained axonal growth and Schwann cell remodeling early during peripheral nerve regeneration. PLoS Genet, 2019. 15(2): p. e1007982.
9. Peter W. Baas, et al., Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc Natl Acad Sci U S A, 1988. 85: p. 8335-8339.
10. Kapitein, L.C. and C.C. Hoogenraad, Which way to go? Cytoskeletal organization and polarized transport in neurons. Mol Cell Neurosci, 2011. 46(1): p. 9-20.
11. Maniar, T.A., et al., UNC-33 (CRMP) and ankyrin organize microtubules and localize kinesin to polarize axon-dendrite sorting. Nat Neurosci, 2011. 15(1): p. 48-56.
12. Yan, J., et al., Kinesin-1 regulates dendrite microtubule polarity in Caenorhabditis elegans. Elife, 2013. 2: p. e00133.
13. Rolls, M.M., et al., Polarity and intracellular compartmentalization of Drosophila neurons. Neural Dev, 2007. 2: p. 7.
14. Michelle C. Stone, Fabrice Roegiers, and M.M. Rolls, Microtubules have opposite orientation in the axons and dendrites of Drosophila neurons. Molecular Biology of the Cell, 2008. 19: p. 4122-4129.
15. Wen Lu, Margot Lakonishok, and V.I. Gelfand, Kinesin-1-powered microtubule sliding initiates axonal regeneration in Drosophila cultured neurons. Molecular Biology of the Cell, 2015. 26: p. 1296-1307.
16. Gero Fink and G. Steinberg, Dynein-dependent motility of microtubules and nucleation sites supports polaarization of the tubulin array in the fungus Ustilago maydis. Molecular biology of the Cell, 2006. 17: p. 3242-3253.
17. Tan, R., et al., Cooperative Accumulation of Dynein-Dynactin at Microtubule Minus-Ends Drives Microtubule Network Reorganization. Dev Cell, 2018. 44(2): p. 233-247 e4.
18. Britt, D.J., et al., Mechanisms of Polarized Organelle Distribution in Neurons. Front Cell Neurosci, 2016. 10: p. 88.
19. Yogev, S., et al., Microtubule Organization Determines Axonal Transport Dynamics. Neuron, 2016. 92(2): p. 449-460.
20. Dennis Bray and M.B. Bunge, Serial analysis of microtubules in the cultured rate sensory axons. Journal of neurocytology, 1981. 10: p. 589-605.
21. Letourneau, P.C., Actin in axons: Stable scaffolds and dynamic filaments, in Cell biology of the axon, E. Koenig, Editor. 2009, Springer: Heidelberg. p. 65-90.
22. Hirokawa, N., Cross-linker system between neurofilaments, microtubules and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method. The Journal of Cell Biology, 1982. 94(1): p. 129-142.
23. Leterrier, C., P. Dubey, and S. Roy, The nano-architecture of the axonal cytoskeleton. Nat Rev Neurosci, 2017. 18(12): p. 713-726.
24. Ke Xu, Gui sheng Zhong, and X. Zhuang, Actin, spectrin and associated proteins form a periodic cytoskeletal structure in axons. Science, 2013. 339: p. 452-456.
25. Lukinavicius, G., et al., Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat Methods, 2014. 11(7): p. 731-3.
26. Sood, P., et al., Cargo crowding at actin-rich regions along axons causes local traffic jams. Traffic, 2018. 19(3): p. 166-181.
27. Yuan, A. and R.A. Nixon, Axonal Transport Mechanisms in Cytoskeleton Formation and Regulation, in Cytoskeleton of the Nervous System, R.A. Nixon and A. Yuan, Editors. 2011, Springer New York: New York, NY. p. 503-527.
28. Yuan, A., et al., Neurofilaments at a glance. J Cell Sci, 2012. 125(Pt 14): p. 3257-63.
29. Yasushi Okada, et al., The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell, 1995. 81: p. 769-780.
30. Yoshimitsu Kanai, et al., KIF5C, a novel neuronal kinesin enriched in motor neurons. The Journal of Neuroscience, 2000. 20(17): p. 6374-6384.
31. H. Mimi Zhou, Ingrid Brust-Mascher, and J.M. Scholey, Direct visualization of the movement of the monomeric axonal transport motor UNC-104 along neuronal processes in living Caenorhabditis elegans. The Journal of Neuroscience, 2001. 21(11): p. 3749-3755.
32. Hirokawa, N. and R. Takemura, Molecular motors and mechanisms of directional transport in neurons. Nat Rev Neurosci, 2005. 6(3): p. 201-14.
33. Hirokawa, N., et al., Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol, 2009. 10(10): p. 682-96.
34. David L. Coy, Michael Wagenbach, and J. Howard, Kinesin takes one 8-nm step for each ATP that it hydrolyzes. The Journal of Biological Chemistry, 1999. 274(6): p. 3667-3671.
35. Samara L. Reck-Peterson, R.D. Vale, and A. Gennerich, Motile properties of cytoplasmid dynein, in Handbook of dynein, Keiko Hirose and L.A. Amos, Editors. 2012, Pan Stanford Publishing Pte. Ltd. .
36. Rock, R.S., et al., Myosin VI is a processive motor with a large step size. Proc Natl Acad Sci U S A, 2001. 98(24): p. 13655-9.
37. Ross, J.L., et al., Kinesin and dynein-dynactin at intersecting microtubules: motor density affects dynein function. Biophys J, 2008. 94(8): p. 3115-25.
38. Brown, A., Slow axonal transport: stop and go traffic in the axon. Nature Reviews, 2000. 1: p. 153-156.
39. Schnapp, B.J., Trafficking of signaling modules by kinesin motors. Journal of Cell Science, 2003. 116: p. 2125-2135.
40. Cianfrocco, M.A. and A.E. Leschziner, Traffic control: adaptor proteins guide dynein-cargo takeoff. EMBO J, 2014. 33(17): p. 1845-6.
41. McKenney, R.J., et al., LIS1 and NudE induce a persistent dynein force-producing state. Cell, 2010. 141(2): p. 304-14.
42. Tomoko Satake, et al., The interaction of kinesin-1 with its adaptor protein JIP1 can be regulated via proteins binding to JIP1-PTB domain. BMC Cell Biology, 2013. 14(12): p. 1-13.
43. Rahmati, M., Kinesin-1 Traffic Control in Neuronal Highway. Biotechnology and Health Sciences, 2016. 3(2).
44. Tien, N.W., et al., Tau/PTL-1 associates with kinesin-3 KIF1A/UNC-104 and affects the motor's motility characteristics in C. elegans neurons. Neurobiol Dis, 2011. 43(2): p. 495-506.
45. Hancock, W.O., Bidirectional cargo transport: moving beyond tug of war. Nat Rev Mol Cell Biol, 2014. 15(9): p. 615-28.
46. Fu, M.M. and E.L. Holzbaur, Integrated regulation of motor-driven organelle transport by scaffolding proteins. Trends Cell Biol, 2014. 24(10): p. 564-74.
47. Chen, C.W., et al., Insights on UNC-104-dynein/dynactin interactions and their implications on axonal transport in Caenorhabditis elegans. J Neurosci Res, 2018.
48. Goldberg, D.J., Microinjection into an identified axon to study the mechanism of fast axonal transport. Proc Natl Acad Sci U S A, 1982. 79: p. 4818-4822.
49. MaryAnn Martin, et al., Cytoplasmic dynein, the dynactin comples, and kinesin are interdependent and essential for fast axonal transport. Molecular Biology of the Cell, 1999. 10: p. 3717-3728.
50. Scott T. Brady, K. Kevin Pfister, and G.S. Bloom, A monoclonal antibody against kinesin inhibits both anterograde and retrograde fast axonal transport in squide axoplasm. Proc Natl Acad Sci U S A, 1990. 87: p. 1061-1065.
51. Lu, H., et al., Diffusive movement of processive kinesin-1 on microtubules. Traffic, 2009. 10(10): p. 1429-38.
52. Tara L. Culver-Hanlon, et al., A microtubule-binding domain in dynactin increases dynein processivity by skating along microtubules. Nature Cell Bilogy, 2006. 8(3): p. 264-270.
53. Uemura, S. and S. Ishiwata, Loading direction regulates the affinity of ADP for kinesin. Nat Struct Biol, 2003. 10(4): p. 308-11.
54. Uemura, S., et al., Kinesin-microtubule binding depends on both nucleotide state and loading direction. Proc Natl Acad Sci U S A, 2002. 99(9): p. 5977-81.
55. Sheng, L., et al., The multiple functions of kinesin-4 family motor protein KIF4 and its clinical potential. Gene, 2018. 678: p. 90-99.
56. Lucanus, A.J. and G.W. Yip, Kinesin superfamily: roles in breast cancer, patient prognosis and therapeutics. Oncogene, 2018. 37(7): p. 833-838.
57. Hirokawa, N. and R. Takemura, Biochemical and molecular characterization of diseases linked to motor proteins. Trends Biochem Sci, 2003. 28(10): p. 558-65.
58. Brady, S.T. and G.A. Morfini, Regulation of motor proteins, axonal transport deficits and adult-onset neurodegenerative diseases. Neurobiol Dis, 2017. 105: p. 273-282.
59. Franker, M.A. and C.C. Hoogenraad, Microtubule-based transport - basic mechanisms, traffic rules and role in neurological pathogenesis. J Cell Sci, 2013. 126(Pt 11): p. 2319-29.
60. Goldstein, L.S., Kinesin molecular motors: transport pathways, receptors, and human disease. Proc Natl Acad Sci U S A, 2001. 98(13): p. 6999-7003.
61. ChunJie Zhao, et al., Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1B beta. Cell, 2001. 105: p. 587-597.
62. Xu, F., et al., KIF1Bbeta mutations detected in hereditary neuropathy impair IGF1R transport and axon growth. J Cell Biol, 2018. 217(10): p. 3480-3496.
63. Adeela Kamal, et al., Axonal transport of amyloid presursor protein is mediated by direct binding of the kinesin light chain subunit of kinesin-I. Neuron, 2000. 28: p. 449-459.
64. Kelly Hares, et al., Overexpression of kinesin superfamily motor proteins in Alzheimer's disease. Journal of Alzheimer's Disease, 2017. 60(4): p. 1511-1524.
65. Ebbing, B., et al., Effect of spastic paraplegia mutations in KIF5A kinesin on transport activity. Hum Mol Genet, 2008. 17(9): p. 1245-52.
66. Jennings, S., et al., Characterization of kinesin switch I mutations that cause hereditary spastic paraplegia. PLoS One, 2017. 12(7): p. e0180353.
67. Mandira Dutta, et al., Structural consequences of hereditary spastic paraplegia disease-related mutations in kinesin. Proc Natl Acad Sci U S A, 2018. 115(46): p. E10822-E10829.
68. Esmaeeli Nieh, S., et al., De novo mutations in KIF1A cause progressive encephalopathy and brain atrophy. Ann Clin Transl Neurol, 2015. 2(6): p. 623-35.
69. Leslie Hotchkiss, Sandra Donkervoort, and M.E. Leach, Novel De Novo mutations in KIF1A as a cause of hereditary spastic paraplegia with progressive central neurvous system involvement. Journal of Child Neurology, 2016. 31(9): p. 1114-1119.
70. Cheon, C.K., et al., Autosomal dominant transmission of complicated hereditary spastic paraplegia due to a dominant negative mutation of KIF1A, SPG30 gene. Sci Rep, 2017. 7(1): p. 12527.
71. Krenn, M., et al., Hereditary spastic paraplegia caused by compound heterozygous mutations outside the motor domain of the KIF1A gene. Eur J Neurol, 2017. 24(5): p. 741-747.
72. Riddle, D.L., et al., Section I, The Biological Model, in C. elegans II, 2nd edition. 1997, Cold Spring Harbor Laboratory Press: Cold Spring Harbor (NY).
73. Bruce Alberts, et al., Caenorhabditis elegans: Development from the perspective of the individual cell, in Molecular biology of the cell. 2002, Garland Science, Taylor & Francis Group, LLC: USA.
74. Baumeister, R., The worm in us- Caenorhabditis elegans as a model of human disease. Trends in biotechnology, 2002. 20(4): p. 147-148.
75. J. Troy Littleton and B. Ganetzky, Ion Channels and synaptic organization: Analysis of the Drosophila Genome. Neuron, 2000. 26: p. 35-43.
76. Siddiqui, N. and A. Straube, Intracellular Cargo Transport by Kinesin-3 Motors. Biochemistry (Mosc), 2017. 82(7): p. 803-815.
77. Anthony J. Otsuka, et al., The C. elegans unc-104 gene encodes a putative kinesin heavy chain-like protein. Neuron, 1991. 16: p. 113-122.
78. Hall, D.H. and E.M. Hedgecock, Kinesin-related gene unc-104 is require for axonal transport of synaptic vesicles in C. elegans. Cell, 1991. 65: p. 837-847.
79. Shen, Z., et al., Conditional knockouts generated by engineered CRISPR-Cas9 endonuclease reveal the roles of coronin in C. elegans neural development. Dev Cell, 2014. 30(5): p. 625-36.
80. Nonet, M.L., Visualization of synaptic specialization in live C. elegans with synaptic vesicle protein-GFP fusions. Journal of Neuroscience Methods, 1999. 89: p. 33-40.
81. Kumar, J., et al., The Caenorhabditis elegans Kinesin-3 motor UNC-104/KIF1A is degraded upon loss of specific binding to cargo. PLoS Genet, 2010. 6(11): p. e1001200.
82. Yoshiaki Yonekawa, et al., Defect in synaptic vesicle precursor transport and neuronal cell death in KIF1A motor protein-deficient mice. The Journal of Cell Biology, 1998. 141(2).
83. Zahn, T.R., et al., Dense core vesicle dynamics in Caenorhabditis elegans neurons and the role of kinesin UNC-104. Traffic, 2004. 5(7): p. 544-59.
84. Niwa, S., et al., Autoinhibition of a Neuronal Kinesin UNC-104/KIF1A Regulates the Size and Density of Synapses. Cell Rep, 2016. 16(8): p. 2129-2141.
85. Li, L.B., et al., The Neuronal Kinesin UNC-104/KIF1A Is a Key Regulator of Synaptic Aging and Insulin Signaling-Regulated Memory. Curr Biol, 2016. 26(5): p. 605-15.
86. Kern, J.V., et al., The kinesin-3, unc-104 regulates dendrite morphogenesis and synaptic development in Drosophila. Genetics, 2013. 195(1): p. 59-72.
87. Zhang, Y.V., et al., The Drosophila KIF1A Homolog unc-104 Is Important for Site-Specific Synapse Maturation. Front Cell Neurosci, 2016. 10: p. 207.
88. Yasushi Okada and N. Hirokawa, A processive single-headed motor: kinesin superfamily protein KIF1A. Science, 1999. 283(5405): p. 1152-1157.
89. Rashid, D.J., et al., Monomeric and dimeric states exhibited by the kinesin-related motor protein KIF1A. J Pept Res, 2005. 65(6): p. 538-49.
90. Michio Tomishige, Dieter R. Klopfenstein, and R.D. Vale, Conversion of Unc104/KIF1A kinesin into a processive motor after dimerization. Science, 2002. 297: p. 2263-2267.
91. Yasushi Okada and N. Hirokawa, Mechanism of the single-headed processivity: Diffusional anchoring between the K-loop of kinesin and the C terminus of tubulin. Proc Natl Acad Sci U S A, 2000. 97(2): p. 640-645.
92. Xing, B.M., et al., Cyclin-dependent kinase 5 controls TRPV1 membrane trafficking and the heat sensitivity of nociceptors through KIF13B. J Neurosci, 2012. 32(42): p. 14709-21.
93. Hammond, J.W., et al., Mammalian Kinesin-3 motors are dimeric in vivo and move by processive motility upon release of autoinhibition. PLoS Biol, 2009. 7(3): p. e72.
94. Peckham, M., Coiled coils and SAH domains in the cytoskeletal molecular motors. Biochemical Society Transactions, 2011. 39(5): p. 1142-1148.
95. Klopfenstein, D.R. and R.D. Vale, The lipid binding pleckstrin homology domain in UNC-104 kinesin is necessary for synaptic vesicle transport in Caenorhabditis elegans. Mol Biol Cell, 2004. 15(8): p. 3729-39.
96. Wagner, O.I., et al., Synaptic scaffolding protein SYD-2 clusters and activates kinesin-3 UNC-104 in C. elegans. Proc Natl Acad Sci U S A, 2009. 106(46): p. 19605-10.
97. Wu, G.H., et al., Identification and Characterization of LIN-2(CASK) as a Regulator of Kinesin-3 UNC-104(KIF1A) Motility and Clustering in Neurons. Traffic, 2016. 17(8): p. 891-907.
98. Gibbs, K.L., L. Greensmith, and G. Schiavo, Regulation of Axonal Transport by Protein Kinases. Trends Biochem Sci, 2015. 40(10): p. 597-610.
99. Muniesh Muthaiyan Shanmugam, et al., Cilium lenght and intraflagellar transport regulation by kinases PKG-1 and GCK-2 in Caenorhabditis elegans sensory neurons. Molecular and Cellular Biology, 2018. 38(7): p. e00612-17.
100. Fu, M.M., J.J. Nirschl, and E.L.F. Holzbaur, LC3 binding to the scaffolding protein JIP1 regulates processive dynein-driven transport of autophagosomes. Dev Cell, 2014. 29(5): p. 577-590.
101. Fu, M.M. and E.L. Holzbaur, JIP1 regulates the directionality of APP axonal transport by coordinating kinesin and dynein motors. J Cell Biol, 2013. 202(3): p. 495-508.
102. Li, S., et al., The 1p36 Tumor Suppressor KIF 1Bbeta Is Required for Calcineurin Activation, Controlling Mitochondrial Fission and Apoptosis. Dev Cell, 2016. 36(2): p. 164-78.
103. James M. McIlvain Jr., et al., Regulation of kinesin activity by phosphorylation of kinesin-associated proteins. The Journal of Biological Chemistry, 1994. 269(29): p. 19176-19182.
104. Fung, S.Y.S., et al., Opposing Activities of Aurora B Kinase and B56-PP2A Phosphatase on MKlp2 Determine Abscission Timing. Curr Biol, 2017. 27(1): p. 78-86.
105. He, J., et al., PTEN regulates EG5 to control spindle architecture and chromosome congression during mitosis. Nat Commun, 2016. 7: p. 12355.
106. Liu, Y., et al., Protein Phosphatase 2A (PP2A) Regulates EG5 to Control Mitotic Progression. Sci Rep, 2017. 7(1): p. 1630.
107. Tonks, N.K., Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol, 2006. 7(11): p. 833-46.
108. Xu, Y. and G.J. Fisher, Receptor type protein tyrosine phosphatases (RPTPs) - roles in signal transduction and human disease. J Cell Commun Signal, 2012. 6(3): p. 125-38.
109. Michel Streuli, et al., Expression of the receptor-linked protein tyrosine phosphatase LAR: proteolytic cleavage and shedding of the CAM-like extracellular region
The EMBO journal, 1992. 11(3): p. 897-907.
110. Carles Serra-Pages, Haruo Saito, and M. Streuli, Mutational analysis of proprotein processing, subunit association, and shedding of the LAR transmembrane protein tyrosine phosphatase. The Journal of Biological Chemistry, 1994. 269(38): p. 23632-23641.
111. Robert M. Kypta, Hong Su, and L.F. Reichardt, Association between a trasnmembrane protein tyrosine phosphatase and the cadherin-catenin complex. The Journal of Cell Biology, 1996. 134(6): p. 1519-1529.
112. Pauline O'Grady, Tran Cam Thai, and H. Saito, The laminin-nidogen complex is a ligand for a specific splice isoform of the transmembrane protein tyrosine phosphatase LAR. The Journal of Cell Biology, 1998. 141(7): p. 1675-1684.
113. Fox, A.N. and K. Zinn, The heparan sulfate proteoglycan syndecan is an in vivo ligand for the Drosophila LAR receptor tyrosine phosphatase. Curr Biol, 2005. 15(19): p. 1701-11.
114. Johnson, K.G., et al., The HSPGs Syndecan and Dallylike bind the receptor phosphatase LAR and exert distinct effects on synaptic development. Neuron, 2006. 49(4): p. 517-31.
115. Carles Serra-Pages, et al., The LAR transmembrane protein tyrosine phosphatase and a coiled-coil LAR-interacting protein co-localize at focal adhesions. The EMBO journal, 1995. 14(12): p. 2827-2838.
116. Dunah, A.W., et al., LAR receptor protein tyrosine phosphatases in the development and maintenance of excitatory synapses. Nat Neurosci, 2005. 8(4): p. 458-67.
117. Andersen, J.N., et al., A genomic perspective on protein tyrosine phosphatases: gene structure, pseudogenes, and genetic disease linkage. FASEB J, 2004. 18(1): p. 8-30.
118. Hyun-Joo Nam, et al., Crystal structure of the tandem phosphatase domains of RPTP LAR. Cell, 1999. 97: p. 449-457.
119. Robert J. Harrington, et al., The C. elegans LAR-like receptor tyrosine phosphatase PTP-3 and the VAB-1 Eph receptor tyrosine kinase have partly redundant functions in morphogenesis. Development, 2002. 129: p. 2141-2153.
120. Ackley, B.D., et al., The two isoforms of the Caenorhabditis elegans leukocyte-common antigen related receptor tyrosine phosphatase PTP-3 function independently in axon guidance and synapse formation. J Neurosci, 2005. 25(33): p. 7517-28.
121. Sundararajan, L. and E.A. Lundquist, Transmembrane proteins UNC-40/DCC, PTP-3/LAR, and MIG-21 control anterior-posterior neuroblast migration with left-right functional asymmetry in Caenorhabditis elegans. Genetics, 2012. 192(4): p. 1373-88.
122. Yip, Z.C. and M.G. Heiman, Ordered arrangement of dendrites within a C. elegans sensory nerve bundle. Elife, 2018. 7.
123. Carles Serra-Pages, et al., Liprins, a family of LAR transmembrane protein-tyrosine phosphatase-interacting proteins. The Journal of Biological Chemistry, 1998. 273(25): p. 15611-15620.
124. Carles Serra-Pages, Michel Streuli, and Q.G. Medley, Liprin phosphorylation regulates binding to LAR: Evidence of liprin autophosphorylation. Biochemistry, 2005. 44: p. 15715-15724.
125. Hoogenraad, C.C., et al., Liprinalpha1 degradation by calcium/calmodulin-dependent protein kinase II regulates LAR receptor tyrosine phosphatase distribution and dendrite development. Dev Cell, 2007. 12(4): p. 587-602.
126. Wei, Z., et al., Liprin-mediated large signaling complex organization revealed by the liprin-alpha/CASK and liprin-alpha/liprin-beta complex structures. Mol Cell, 2011. 43(4): p. 586-98.
127. Li, L., et al., Drosophila Syd-1, liprin-alpha, and protein phosphatase 2A B' subunit Wrd function in a linear pathway to prevent ectopic accumulation of synaptic materials in distal axons. J Neurosci, 2014. 34(25): p. 8474-87.
128. Mitchell, C.J., et al., Unbiased identification of substrates of protein tyrosine phosphatase ptp-3 in C. elegans. Mol Oncol, 2016. 10(6): p. 910-20.
129. Jin, M.Z.a.Y., The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. elegans. Nature, 1999. 401.
130. Patel, M.R., et al., Hierarchical assembly of presynaptic components in defined C. elegans synapses. Nat Neurosci, 2006. 9(12): p. 1488-98.
131. Chia, P.H., et al., Intramolecular regulation of presynaptic scaffold protein SYD-2/liprin-alpha. Mol Cell Neurosci, 2013. 56: p. 76-84.
132. Yeh, E., et al., Identification of genes involved in synaptogenesis using a fluorescent active zone marker in Caenorhabditis elegans. J Neurosci, 2005. 25(15): p. 3833-41.
133. Dai, Y., et al., SYD-2 Liprin-alpha organizes presynaptic active zone formation through ELKS. Nat Neurosci, 2006. 9(12): p. 1479-87.
134. Maulik R. Patel and K. Shen, RSY-1 is a local inhibitor of presynaptic assembly in C. elegans. Science, 2009. 323(5920): p. 1500-1503.
135. Taru, H. and Y. Jin, The Liprin homology domain is essential for the homomeric interaction of SYD-2/Liprin-alpha protein in presynaptic assembly. J Neurosci, 2011. 31(45): p. 16261-8.
136. Stigloher, C., et al., The presynaptic dense projection of the Caenorhabditis elegans cholinergic neuromuscular junction localizes synaptic vesicles at the active zone through SYD-2/liprin and UNC-10/RIM-dependent interactions. J Neurosci, 2011. 31(12): p. 4388-96.
137. Kittelmann, M., et al., Liprin-alpha/SYD-2 determines the size of dense projections in presynaptic active zones in C. elegans. J Cell Biol, 2013. 203(5): p. 849-63.
138. Edwards, S.L., et al., Synapse-Assembly Proteins Maintain Synaptic Vesicle Cluster Stability and Regulate Synaptic Vesicle Transport in Caenorhabditis elegans. Genetics, 2015. 201(1): p. 91-116.
139. Edwards, S.L., et al., Sentryn Acts with a Subset of Active Zone Proteins To Optimize the Localization of Synaptic Vesicles in Caenorhabditis elegans. Genetics, 2018. 210(3): p. 947-968.
140. Zheng, Q., et al., The vesicle protein SAM-4 regulates the processivity of synaptic vesicle transport. PLoS Genet, 2014. 10(10): p. e1004644.
141. Jaewon Ko, et al., Interaction between liprin-alpha and GIT1 is required for AMPA receptor targeting. The Journal of Neuroscience, 2003. 23(5): p. 1667-1677.
142. Goodwin, P.R. and P. Juo, The scaffolding protein SYD-2/Liprin-alpha regulates the mobility and polarized distribution of dense-core vesicles in C. elegans motor neurons. PLoS One, 2013. 8(1): p. e54763.
143. Karla J Opperman and B. Grill, RPM-1 is localized to distinct subcellular compartments and regulates axon lenght in GABAergic motor neurons. Neural Development, 2014. 9(10).
144. Noma, K., A. Goncharov, and Y. Jin, Systematic analyses of rpm-1 suppressors reveal roles for ESS-2 in mRNA splicing in Caenorhabditis elegans. Genetics, 2014. 198(3): p. 1101-15.
145. Edwards, S.L., et al., UNC-16 (JIP3) Acts Through Synapse-Assembly Proteins to Inhibit the Active Transport of Cell Soma Organelles to Caenorhabditis elegans Motor Neuron Axons. Genetics, 2015. 201(1): p. 117-41.
146. Nancy Kaufmann, et al., Drosophilla liprin-alpha and the receptor phosphatase Dlar control synapse morphogenesis. Neuron, 2002. 34(27-38).
147. Johnson, E.S.a.K.G., LAR, liprin alpha and the regulation of active zone morphogenesis. Journal of Cell Science, 2007. 120(21): p. 3723-3728.
148. Brenner, S., The genetics of Caenorhabditis elegans. Genetics, 1974. 77(1): p. 71-94.
149. Hsu, C.C., J.D. Moncaleano, and O.I. Wagner, Sub-cellular distribution of UNC-104(KIF1A) upon binding to adaptors as UNC-16(JIP3), DNC-1(DCTN1/Glued) and SYD-2(Liprin-alpha) in C. elegans neurons. Neuroscience, 2011. 176: p. 39-52.
150. Evans, t.C., Transformation and microinjection, in WormBook, T.C. Evans, Editor. 2006, The C. elegans Research Community, WormBook.
151. McCloy, R.A., et al., Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events. Cell Cycle, 2014. 13(9): p. 1400-12.
152. Ravi S Kamath, et al., Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biology, 2000. 2(1): p. research0002.1-0002.10.
153. Nguyen, A.W. and P.S. Daugherty, Evolutionary optimization of fluorescent proteins for intracellular FRET. Nat Biotechnol, 2005. 23(3): p. 355-60.
154. Fred S. Wouters, Peter J. Verveer, and P.I.H. Bastiaens, Imaging biochemistry inside cells. TRENDS in Cell Biology, 2001. 11(5): p. 203-211.
155. Spiering, D., et al., Quantitative ratiometric imaging of FRET-biosensors in living cells. Methods Cell Biol, 2013. 114: p. 593-609.
156. Kalab, P., et al., Analysis of a RanGTP-regulated gradient in mitotic somatic cells. Nature, 2006. 440(7084): p. 697-701.
157. Hoogewijs, D., et al., Selection and validation of a set of reliable reference genes for quantitative sod gene expression analysis in C. elegans. BMC Mol Biol, 2008. 9: p. 9.
158. Anthis, N.J., et al., Beta integrin tyrosine phosphorylation is a conserved mechanism for regulating talin-induced integrin activation. J Biol Chem, 2009. 284(52): p. 36700-10.
159. Maulik R. Patel and K. Shen, RSY-1 is a local inhibitor of presynaptic assembly in C. elegans. Science, 2009. 323: p. 1500-1503.
160. Michael Wyszynski, et al., Interaction between GRIP and liprin-alpha/SYD2 is required for AMPA receptor targeting. Neuron, 2002. 34(39-52).
161. Qu, L., et al., Synapse-to-synapse variation in mean synaptic vesicle size and its relationship with synaptic morphology and function. J Comp Neurol, 2009. 514(4): p. 343-52.
162. Daniels, R.W., et al., Increased expression of the Drosophila vesicular glutamate transporter leads to excess glutamate release and a compensatory decrease in quantal content. J Neurosci, 2004. 24(46): p. 10466-74.
163. Daniels, R.W., et al., A single vesicular glutamate transporter is sufficient to fill a synaptic vesicle. Neuron, 2006. 49(1): p. 11-6.
164. Li, J., et al., Restraint of presynaptic protein levels by Wnd/DLK signaling mediates synaptic defects associated with the kinesin-3 motor Unc-104. Elife, 2017. 6.
165. Nektarios Tavernarakis, et al., Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nature Genetics, 2000. 24: p. 180-183.
Chapter II
1. Hirokawa, N., Cross-linker system between neurofilaments, microtubules and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method. J Cell Bio, 1982. 94(1): p. 129-142.
2. Wagner, O.I., et al., Softness, strength and self-repair in intermediate filament networks. Exp Cell Res, 2007. 313(10): p. 2228-35.
3. Esue, O., et al., A direct interaction between actin and vimentin filaments mediated by the tail domain of vimentin. J Biol Chem, 2006. 281(41): p. 30393-9.
4. Naina Kurup, et al., Intermediate filament accumulation can stabilize microtubules in Caenorhabditis elegans motor neurons. PNAS, 2018. 115(12): p. 3114-3119.
5. Yuan, A., et al., Neurofilaments at a glance. J Cell Sci, 2012. 125(Pt 14): p. 3257-63.
6. Herrmann, H. and U. Aebi, Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular Scaffolds. Annu Rev Biochem, 2004. 73: p. 749-89.
7. Goldman, R.D., et al., Intermediate filaments: versatile building blocks of cell structure. Curr Opin Cell Biol, 2008. 20(1): p. 28-34.
8. Janmey, P.A., Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. J Cell Bio, 1991. 113(1): p. 155-160.
9. Michael Hesse, Thomas M. Magin, and K. Weber, Genes for intermediate filament proteins and the draft sequence of the human genome: novel keratin genes and a surprisingly high number of pseudogenes related to keratin genes 8 and 18. J Cell Sci, 2001. 114: p. 2569-2575.
10. Perrin, F.E., et al., No widespread induction of cell death genes occurs in pure motoneurons in an amyotrophic lateral sclerosis mouse model. Hum Mol Genet, 2005. 14(21): p. 3309-20.
11. Anton Karabinos, et al., In vivo and in vitro evidence that the four essential intermediate filament (IF) protein A1, A2, A3 and B1 of the nematode Caenorhabditis elegans form an obligate heteropolymeric IF system. J Mol Bio, 2003. 333: p. 307-319.
12. Julie Carter, et al., Neurofilament(NF) assembly; Divergent characteristics of human and rodent NF-L subunits. J Bio Chem, 1998. 273(9): p. 5101-5108.
13. Peter W. Baas and A. Brown, Slow axonal transport: the polymer transport model. Trends in Cell Biology, 1997. 7: p. 380-384.
14. Nobutaka Hirokawa, et al., Slow axonal transport: the subunit transport model. Trends in Cell Biology, 1997. 7: p. 384-388.
15. Yuan, A., et al., Neurofilaments form a highly stable stationary cytoskeleton after reaching a critical level in axons. J Neurosci, 2009. 29(36): p. 11316-29.
16. Millecamps, S., et al., Conditional NF-L transgene expression in mice for in vivo analysis of turnover and transport rate of neurofilaments. J Neurosci, 2007. 27(18): p. 4947-56.
17. Rao, M.V., et al., The neurofilament middle molecular mass subunit carboxyl-terminal tail domains is essential for the radial growth and cytoskeletal architecture of axons but not for regulating neurofilament transport rate. J Cell Biol, 2003. 163(5): p. 1021-31.
18. Wagner, O.I., et al., Mechanisms of mitochondria-neurofilament interactions. J Neurosci, 2003. 23(27): p. 9046-58.
19. Rao, M.V., et al., The myosin Va head domain binds to the neurofilament-L rod and modulates endoplasmic reticulum (ER) content and distribution within axons. PLoS One, 2011. 6(2): p. e17087.
20. Bocquet, A., et al., Neurofilaments bind tubulin and modulate its polymerization. J Neurosci, 2009. 29(35): p. 11043-54.
21. Jennie Lugassy, et al., Maegeli-Franceschetti-Jadassohn syndrome and dermatopathia pigmentosa reticularis: Two allelic ectodermal dysplasias caused by dominant mutations in KRT14. The American Journal of Human Genetics, 2006. 79(724-730).
22. Liovic, M., et al., A novel keratin 5 mutation (K5V186L) in a family with EBS-K: a conservative substitution can lead to development of different disease phenotypes. J Invest Dermatol, 2001. 116(6): p. 964-9.
23. Matt Van De Rijn, et al., Expression of cytokeratins 17 and 5 identifies a group of breast carcinomas with poor clinical outcome. American journal of Pathology, 2002. 161(6): p. 1991-1996.
24. Aidong Yuan and R.A. Nixon, Specialized roles of neurofilament proteins in synapses:Relevance to neuropsychiatric disorders. Brain Research bulletin, 2016. 126(3): p. 334-346.
25. Braissant, O., Neurofilament proteins in brain diseases, in In: New research on neurofilament proteins, R.K. Arlen, Editor. 2007, Nova Science Publishers, Inc. p. 25-51.
26. Liu, Q., et al., Neurofilament proteins in neurodegenerative diseases. Cell Mol Life Sci, 2004. 61(24): p. 3057-75.
27. Carberry, K., et al., Intermediate filaments in Caenorhabditis elegans. Cell Motil Cytoskeleton, 2009. 66(10): p. 852-64.
28. Eckart Bartnik, Mary Osborn, and K. Weber, Intermediate Filaments in muscles and epithelial cells of Nematodes. j Cell Bio, 1986. 102: p. 2033-2041.
29. Bossinger, O., et al., The apical disposition of the Caenorhabditis elegans intestinal terminal web is maintained by LET-413. Dev Biol, 2004. 268(2): p. 448-56.
30. Huub Dodemont, et al., Eight genes and alternative RNA processing pathways generate an unexpectedly large diversity of cytoplasmic intermediate filament proteins in the nematode Caenorhabditis elegans. The EMBO journal, 1994. 13(11): p. 2625-2638.
31. Karabinos, A., et al., Essential roles for four cytoplasmic intermediate filament proteins in Caenorhabditis elegans development.PNAS, 2001. 98(14): p. 7863-8.
32. Anton Karabinos, et al., Expression profiles of the essential intermediate filament (IF) protein A2 and the IF protein C2 in the nematode Caenorhabditis elegans. Mechanisms of Development, 2002. 117: p. 311-314.
33. Woo, W.M., et al., Intermediate filaments are required for C. elegans epidermal elongation. Dev Biol, 2004. 267(1): p. 216-29.
34. Husken, K., et al., Maintenance of the intestinal tube in Caenorhabditis elegans: the role of the intermediate filament protein IFC-2. Differentiation, 2008. 76(8): p. 881-96.
35. Christoph Segbert, et al., Molecular and functional analysis of apical junction formation in the gut epithelium of Caenorhabditis elegans. Developmental Biology, 2004. 266(17-26).
36. Karabinos, A., J. Schunemann, and K. Weber, Most genes encoding cytoplasmic intermediate filament (IF) proteins of the nematode Caenorhabditis elegans are required in late embryogenesis. Eur J Cell Biol, 2004. 83(9): p. 457-68.
37. Vera Hapiak, et al., MUA-6, a gene required for tissue integrity in Caenorhabditis elegans, encodes a cytoplasmic intermediate filament. Developmental Biology, 2003. 263(330-342).
38. Xuecheng Ding, Qi Rui, and D. Wang, Functionl disruption in epidermal barrier enhances toxicity and accumulation of graphene oxide. Ecotoxicology and Environmental Safety, 2018. 163: p. 456-464.
39. Hikmat Al-Hashimi, et al., Tubular excretory canal structure depends on intermediate filaments EXC-2 and IFA-4 in Caenorhabditis elegans. Genetics, 2018. 210(2): p. 637-652.
40. Kolotuev, I., et al., A pathway for unicellular tube extension depending on the lymphatic vessel determinant Prox1 and on osmoregulation. Nat Cell Biol, 2013. 15(2): p. 157-68.
41. Bhan, P., TAG-63 is a neurofilament-like protein that affects that fast axonal transport machinery in C. elegans, in Department of Life Science. 2018, National Tsing Hua University: Taiwan.
42. Wang, D., Identification of an intermediate filament TAG-63 affecting fast axonal transport in Caenorhabditis elegans, in Institute of Molecular and Cellular Biology. 2016, National Tsing Hua University: Hsinchu.
43. Chan, D.C., Fusion and fission: interlinked processes critical for mitochondrial health. Annu Rev Genet, 2012. 46: p. 265-87.
44. Li, Z., et al., The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell, 2004. 119(6): p. 873-87.
45. Liu, X. and G. Hajnoczky, Ca2+-dependent regulation of mitochondrial dynamics by the Miro-Milton complex. Int J Biochem Cell Biol, 2009. 41(10): p. 1972-6.
46. Saotome, M., et al., Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase. PNAS, 2008. 105(52): p. 20728-33.
47. Fransson, S., A. Ruusala, and P. Aspenstrom, The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking. Biochem Biophys Res Commun, 2006. 344(2): p. 500-10.
48. Kuznetsov, A.V. and R. Margreiter, Heterogeneity of mitochondria and mitochondrial function within cells as another level of mitochondrial complexity. Int J Mol Sci, 2009. 10(4): p. 1911-29.
49. Zhu, X.H., et al., Quantitative imaging of energy expenditure in human brain. Neuroimage, 2012. 60(4): p. 2107-17.
50. Harris, J.J., R. Jolivet, and D. Attwell, Synaptic energy use and supply. Neuron, 2012. 75(5): p. 762-77.
51. MacAskill, A.F. and J.T. Kittler, Control of mitochondrial transport and localization in neurons. Trends Cell Biol, 2010. 20(2): p. 102-12.
52. Devine, M.J., N. Birsa, and J.T. Kittler, Miro sculpts mitochondrial dynamics in neuronal health and disease. Neurobiol Dis, 2016. 90: p. 27-34.
53. Sheng, Z.H., Mitochondrial trafficking and anchoring in neurons: New insight and implications. J Cell Biol, 2014. 204(7): p. 1087-98.
54. Rawson, R.L., et al., Axons degenerate in the absence of mitochondria in C. elegans. Curr Biol, 2014. 24(7): p. 760-5.
55. R.L. Morris and P.J. Hollenbeck, Axonal transport of mitochondria along microtubules and F-actin in living vertebrate neurons. J Cell Bio, 1995. 131(5): p. 1315-1326.
56. Macaskill, A.F., et al., Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron, 2009. 61(4): p. 541-55.
57. Sood, P., et al., Cargo crowding at actin-rich regions along axons causes local traffic jams. Traffic, 2018. 19(3): p. 166-181.
58. Sun, T., et al., Motile axonal mitochondria contribute to the variability of presynaptic strength. Cell Rep, 2013. 4(3): p. 413-419.
59. Nobutaka Hirokawa, et al., Kinesin associates with anterogradely transported membranous organelles in vivo. J Cell bio, 1991. 114(2): p. 295-302.
60. Aaron D. Pilling, et al., Kinesin-1 and dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Molecular Biology of the Cell, 2006. 17: p. 2057-2068.
61. Wang, X. and T.L. Schwarz, The mechanism of Ca2+ -dependent regulation of kinesin-mediated mitochondrial motility. Cell, 2009. 136(1): p. 163-74.
62. Masaomi Nangaku, et al., KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell, 1994. 79: p. 1209-1220.
63. Kousuke Tanaka, et al., KLP6: a newly identified kinesin that regulates the morphology and transport of mitochondria in neuronal cells. J Cell Sci, 2011. 124: p. 2457-2465.
64. Monroy, B.Y., et al., Competition between microtubule-associated proteins directs motor transport. Nat Commun, 2018. 9(1): p. 1487.
65. Hooikaas, P.J., et al., MAP7 family proteins regulate kinesin-1 recruitment and activation. J Cell Bio, 2019. 218(4): p. 1298-1318.
66. Fuchs, F. and B. Westermann, Role of Unc104/KIF1-related motor proteins in mitochondrial transport in Neurospora crassa. Mol Biol Cell, 2005. 16(1): p. 153-61.
67. MaryAnn Martin, et al., Cytoplasmic dynein, the dynactin complex, and kinesin are interdependent and essential for fast axonal transport. Mol Biol Cell, 1999. 10: p. 3717-3728.
68. Nobutaka Hirokawa, et al., Brain dynein (MAP1C) localizes on both anterogradely and retrogradely transported membranous organelles in vivo. J Cell Bio, 1990. 111: p. 1027-1037.
69. Cai, Q., C. Gerwin, and Z.H. Sheng, Syntabulin-mediated anterograde transport of mitochondria along neuronal processes. J Cell Bio, 2005. 170(6): p. 959-69.
70. Fujita, T., et al., Axonal guidance protein FEZ1 associates with tubulin and kinesin motor protein to transport mitochondria in neurites of NGF-stimulated PC12 cells. Biochem Biophys Res Commun, 2007. 361(3): p. 605-10.
71. Ikuta, J., et al., Fasciculation and elongation protein zeta-1 (FEZ1) participates in the polarization of hippocampal neuron by controlling the mitochondrial motility. Biochem Biophys Res Commun, 2007. 353(1): p. 127-32.
72. van Spronsen, M., et al., TRAK/Milton motor-adaptor proteins steer mitochondrial trafficking to axons and dendrites. Neuron, 2013. 77(3): p. 485-502.
73. Glater, E.E., et al., Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. J Cell Bio, 2006. 173(4): p. 545-57.
74. Lopez-Domenech, G., et al., The Eutherian Armcx genes regulate mitochondrial trafficking in neurons and interact with Miro and Trak2. Nat Commun, 2012. 3: p. 814.
75. Serrat, R., et al., The Armc10/SVH gene: genome context, regulation of mitochondrial dynamics and protection against Abeta-induced mitochondrial fragmentation. Cell Death Dis, 2014. 5: p. e1163.
76. Sure, G.R., et al., UNC-16/JIP3 and UNC-76/FEZ1 limit the density of mitochondria in C. elegans neurons by maintaining the balance of anterograde and retrograde mitochondrial transport. Sci Rep, 2018. 8(1): p. 8938.
77. Kang, J.S., et al., Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell, 2008. 132(1): p. 137-48.
78. Iyer, S.P., Y. Akimoto, and G.W. Hart, Identification and cloning of a novel family of coiled-coil domain proteins that interact with O-GlcNAc transferase. J Biol Chem, 2003. 278(7): p. 5399-409.
79. Nekrasova, O.E., et al., Vimentin intermediate filaments modulate the motility of mitochondria. Mol Biol Cell, 2011. 22(13): p. 2282-9.
80. Matveeva, E.A., et al., Vimentin is involved in regulation of mitochondrial motility and membrane potential by Rac1. Biol Open, 2015: p. 1-8.
81. Chernoivanenko, I.S., et al., Mitochondrial membrane potential is regulated by vimentin intermediate filaments. FASEB J, 2015. 29(3): p. 820-7.
82. Jason Lowery, et al., Abnormal intermediate filament organization alters mitochndrial motility in giant axonal neuropathy fibroblasts. Mol Biol Cell, 2016. 27: p. 608-616.
83. Israeli, E., et al., Intermediate filament aggregates cause mitochondrial dysmotility and increase energy demands in giant axonal neuropathy. Hum Mol Genet, 2016. 25(11): p. 2143-2157.
84. Silvander, J.S.G., et al., Keratins regulate beta-cell mitochondrial morphology, motility, and homeostasis. FASEB J, 2017. 31(10): p. 4578-4587.
85. Itoh, K., et al., Mitochondrial dynamics in neurodegeneration. Trends Cell Biol, 2013. 23(2): p. 64-71.
86. Sheng, Z.H. and Q. Cai, Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat Rev Neurosci, 2012. 13(2): p. 77-93.
87. Chen, H. and D.C. Chan, Mitochondrial dynamics--fusion, fission, movement, and mitophagy--in neurodegenerative diseases. Hum Mol Genet, 2009. 18(R2): p. R169-76.
88. Andreas Weihofen, et al., Pink1 forms a multiprotein comples with Miro and Milton, linking Pink1 function to mitochondrial trafficking. Biochemistry, 2009. 48: p. 2045-2052.
89. Rui, Y., et al., Acute impairment of mitochondrial trafficking by beta-amyloid peptides in hippocampal neurons. J Neurosci, 2006. 26(41): p. 10480-7.
90. Gorazd B. Stokin, et al., Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science, 2005. 307: p. 1282-1288.
91. Caviston, J.P. and E.L. Holzbaur, Huntingtin as an essential integrator of intracellular vesicular trafficking. Trends Cell Biol, 2009. 19(4): p. 147-55.
92. Emilie Colin, et al., Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons. The EMBO journal, 2008. 27: p. 2124-2134.
93. Chang, D.T., et al., Mutant huntingtin aggregates impair mitochondrial movement and trafficking in cortical neurons. Neurobiol Dis, 2006. 22(2): p. 388-400.
94. Shan, X., et al., Altered distributions of Gemini of coiled bodies and mitochondria in motor neurons of TDP-43 transgenic mice. PNAS, 2010. 107(37): p. 16325-30.
95. Alexander, A.G., V. Marfil, and C. Li, Use of Caenorhabditis elegans as a model to study Alzheimer's disease and other neurodegenerative diseases. Front Genet, 2014. 5: p. 279.
96. Brenner, S., The genetics of Caenorhabditis elegans. Genetics, 1974. 77(1): p. 71-94.
97. Wagner, O.I., et al., Synaptic scaffolding protein SYD-2 clusters and activates kinesin-3 UNC-104 in C. elegans. PNAS, 2009. 106(46): p. 19605-10.
98. Chang, Y., The effects of an intermediate filament protein IFB-1 on mitochondrial transport in C. elegans amphid neurons, in Institute of Molecular and Cellular Biology. 2012, National Tsing Hua University: Hsinchu, Taiwan.
99. Tong, Y.G. and T.R. Burglin, Conditions for dye-filling of sensory neurons in Caenorhabditis elegans. J Neurosci Methods, 2010. 188(1): p. 58-61.
100. Margie, O., C. Palmer, and I. Chin-Sang, C. elegans chemotaxis assay. J Vis Exp, 2013(74): p. e50069.
101. Bargmann, C.I., Chemosensation in C. elegans. Worm Book, 2006.
102. Sutphin, G.L. and M. Kaeberlein, Measuring Caenorhabditis elegans life span on solid media. J Vis Exp, 2009(27).
103. Park, H.H., Y. Jung, and S.V. Lee, Survival assays using Caenorhabditis elegans. Mol Cells, 2017. 40(2): p. 90-99.
104. Hoogewijs, D., et al., Selection and validation of a set of reliable reference genes for quantitative sod gene expression analysis in C. elegans. BMC Mol Biol, 2008. 9: p. 9.
105. Adler, J. and I. Parmryd, Quantifying colocalization by correlation: the Pearson correlation coefficient is superior to the Mander's overlap coefficient. Cytometry A, 2010. 77(8): p. 733-42.
106. McCloy, R.A., et al., Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events. Cell Cycle, 2014. 13(9): p. 1400-12.
107. Yamamoto, H., et al., NCoR1 is a conserved physiological modulator of muscle mass and oxidative function. Cell, 2011. 147(4): p. 827-39.
108. Porta-de-la-Riva, M., et al., Basic Caenorhabditis elegans methods: synchronization and observation. J Vis Exp, 2012(64): p. e4019.
109. Gardner, M., M. Rosell, and E.M. Myers, Measuring the effects of bacteria on C. elegans behavior using an egg retention assay. J Vis Exp, 2013(80): p. e51203.
110. Hu, C.C., et al., Toxic Effects of Size-tunable Gold Nanoparticles on Caenorhabditis elegans Development and Gene Regulation. Sci Rep, 2018. 8(1): p. 15245.
111. Raizen D., et al., Methods for measuring pharyngeal behaviours, in Wormbook, O. Hobert, Editor. 2012.
112. Martin Chalfie, et al., Assaying mechanosensation, in Wormbook, O. Hobert, Editor. 2014.
113. Butler, V.J., et al., Tau/MAPT disease-associated variant A152T alters tau function and toxicity via impaired retrograde axonal transport. Hum Mol Genet, 2018.
114. JS, D., Immunoshistochemistry. WormBook: the online review of C. elegans biology, 2006: p. 1-61.
115. Roland Benz and S. McLaughlin, The molecular mechanism of action of the proton ionophore FCCP (Carbonylcyanide p-trifluoromethoxyphenylhydrazone. Biophys., 1983. 41: p. 381-398.
116. Barkan, R., et al., Ce-emerin and LEM-2: essential roles in Caenorhabditis elegans development, muscle function, and mitosis. Mol Biol Cell, 2012. 23(4): p. 543-52.
117. Genrich V. Tolstonog, et al., Role of the intermediate filament protein vimentin in delaying senescence and in the spontaneous immortalization of mouse embryo fibroblasts. DNA and Cell Biology, 2001. 20(9): p. 509-529.
118. Leterrier, J.F., et al., Interactions between brain mitochondria and cytoskeleton: Evidence for specialized outer membrane domains involved in the association of cytoskeleton-associated proteins to mitochondria in situ and in vitro. Microscopy Research Technique, 1994. 27(3).
119. Capetanaki, Y., et al., Muscle intermediate filaments and their links to membranes and membranous organelles. Exp Cell Res, 2007. 313(10): p. 2063-76.
120. Winter, L., C. Abrahamsberg, and G. Wiche, Plectin isoform 1b mediates mitochondrion-intermediate filament network linkage and controls organelle shape. J Cell Bio, 2008. 181(6): p. 903-11.
121. Carla M. Koehler, Sabeeha Merchant, and G. Schatz, How membrane proteins travel across the mitochondrial intermembrane space. Trends in Biochemical Sciences, 1999. 24(11): p. 428-432.
122. Yu S, et al., Acrylamide-induced changes in the neurofilament protein of rat cerebrum fractions. Neurochemical Research, 2005. 30(9): p. 1079-85.
123. Schaumburg HH, Wisniewski HM, and S. PS, Ultrastructural studies of the dying-back process. I. Peripheral nerve terminal and axon degeneration in systemic acrylamide intoxication. J Neuropathol. Exp. Neurol. , 1974. 33(2): p. 260-84.
124. Hasegawa, K., et al., Extremely low dose of acrylamide decreases lifespan in Caenorhabditis elegans. Toxicol Lett, 2004. 152(2): p. 183-9.
125. Lihong An, et al., Acrylamide retards the slow axonal transport of neurofilaments in rat cultured dorsal root ganglia neurons and the corresponding mechanisms. Neurochem Res, 2015. 41(5): p. 1000-1009.
126. Endo H, Kittur S, and S. M, Acrylamide alters neurofilament protein gene expression in rat brain. neurochem Res , 1994. 19(7): p. 815-20.
127. Bruce G. Gold, John W. Griffin, and D.L. Price, Slow axonal transport in acrylamide neuropathy: Different abnormalities produced by single-dose and continuous administration. The journal of Neuroscience, 1985. 5(7): p. 1755-1768.
128. Kazuaki Ohsawa, Hiroyuki Ohshima, and S. Ohki, Surface potential and surface charge density of the cerebral-cortex synaptic vesicle and stability of vesicle suspension. Biochimica et Biophysica Acta, 1981. 648: p. 206-214.
129. Martin Chalfie and J. White, The Nervous system, in The Nematode Caenorhabditis elegans. 1988.