簡易檢索 / 詳目顯示

研究生: 許伯誠
Hsu, Po-Cheng
論文名稱: 強健可調式低功耗穿戴式感測系統
A Configurable Robust Low-Power Wearable Sensing System
指導教授: 馬席彬
Ma, Hsi-Pin
口試委員: 蔡佩芸
Tsai, Pei-Yun
楊家驤
Yang, Chia-Hsiang
林彥宏
Lin, Yen-Hung
洪啟盛
Hung, Chi-Sheng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 107
語文別: 英文
論文頁數: 106
中文關鍵詞: 穿戴式低功耗感測系統生理訊號
外文關鍵詞: wearable, low power, sensing system, physiological siganl
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著老年人口增加以及人們對健康的重視不斷上升,行動照護裝置的需求越來越重要。在本論文中設計出一款多功能的穿戴式生理感測裝置,此裝置可量測心電圖 (electrocardiography, ECG) 訊號、呼吸時的胸腔阻抗變化、穿戴者的運動軌跡、穿戴者體表的溫溼度以及環境中的溫溼度。透過微控制器整合訊號後再使用藍芽低功耗 (Bluetooth Low Energy, BLE) 將資料傳送至行動裝置的應用程式中監控。本系統中使用的行動裝置為iOS系統的裝置,如iPhone和iPad。
    本系統中的穿戴式裝置提供了3種運作模式和心率版本,使用者可以根據不同的應用來選擇適合的模式來達到省電的效果並延長裝置的使用時間。而在心率版本中,此裝置關閉了所有不需要的執行緒並降低運作頻率來達到最低的功耗。電流消耗將會降至2.52 mA,總共節省了約79.55%的電流消耗,且裝置的使用時間將會延長到119.2小時。
    除了心率版本外,我們也為系統設計了其他的低功號設計,像是資料量簡化和線程控制。在透過資料量簡化後,ECG訊號的解析度為12位元,取樣頻率為500赫茲,呼吸阻抗的解析度為12位元,取樣頻率為20赫茲,九軸訊號的解析度為16位元,取樣頻率為25赫茲,三軸訊號的解析度為12位元,取樣頻率為30赫茲,溫度和濕度的解析度為8位元,取樣頻率為0.2赫茲。在ECG-9axis模式下節省了75.6%的封包傳輸量,且節省了約22%的電流消耗。
    我們使用多線程的方式來整合處理器、藍芽模組和所有裝置上的感測器。當此裝置在不同模式下運作時,我們可透過線程控制來阻止或激活特定的線程,透過此方法,我們降低了MSP432的工作量以及電流消耗量。此外,此裝置會使用
    QRS波群偵測演算法來計算心率並且估測ECG訊號品質,當訊號品質不佳時,裝置會關閉ECG感測器以節省功耗,且iOS裝置上的監測App也會傳送訊息來 之使用者。
    在未使用低功耗設計的情況下,平均消耗電流約為12.31毫安培,在一個300毫安時容量的電池作為電源供應之下,已經可以使用約24.37小時。使用低功耗設計後,在ECG-9axis模式下可使用約35.44小時,ECG-3axis模式下可使用約58.47小時。


    With the older population grows dramatically and people pay more and more attention to their health, the requirement of mobile health care system increases gradually. In this thesis, we design a wearable sensing system. The wearable sensor in this system can measure the electrocardiography (ECG) signal, respiration signal, motion of users, body surface temperature, body surface humidity, environment temperature, and environment humidity. These signals are integrated by the microcontroller (MCU) and sent to mobile devices by Bluetooth Low Energy (BLE). Besides, mobile devices are iOS devices, such as iPhone and iPad.

    The sensor in this system provides three operating modes and the heart rate version. According to different applications, we can select the most appropriate mode to save power consumption and extend the usage time of this sensor. In addition, when the sensor works in the heart rate version, it will terminate threads which are unnecessary and decrease the operating frequency to reach the lowest power consumption. The current consumption is reduced to 2.52 mA in heart rate version, which saves about 79.55\% of current consumption. In addition, the battery lifetime of the sensor in this version can extend to 119.2 hours.

    Except for the heart rate version, we implement other low-power designs to the system, such as reducing data and thread control. After reducing data, the resolution of ECG signal is 12 bits, and the sampling rate is 500 Hz. The resolution of respiration signal is 12 bits, and the sampling rate is 20 Hz. The resolution of 9-axis signal is 16 bits, and the sampling rate is 25 Hz. The resolution of 3-axis signal is 12 bits, and the sampling rate is 30 Hz. The resolution of temperature signal and humidity signal is 8 bits, and the sampling rate is 0.2 Hz. Finally, it saves about 75.6\% packets rate when the device works in the ECG-9axis mode. Besides, after implementing the data reduction, the sensing device can save about 22\% of current consumption.

    We integrates main processor, BLE module, and peripheral sensors by multithread. When the device works in different modes, we block or active specific thread by the thread control. By thread control, we decrease the workload of main processor and reduce the current consumption. Moreover, the sensor calculates the heart rate and estimates the quality of ECG signals by QRS complex detection algorithm. When the sensor detects bad quality ECG signals, the ECG sensor will be disabled to save the power consumption, and the monitoring App in the iOS device will send an alarm to notify users.

    In terms of the current consumption of the sensor, the original average current consumption is 12.31 mA, and the battery lifetime is 24.37 hours with a 300 mAh battery. After the low power design, the battery lifetime of the sensor is 35.44 hours in the ECG-9axis mode. Besides, in the ECG-3axis mode, the battery lifetime of the sensor is 58.47 hours.

    Abstract i 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Related Works and Technologies 5 2.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Physiological Signals in the System . . . . . . . . . . . . . . . . . . . . . . 7 2.2.1 Electrocardiography (ECG) . . . . . . . . . . . . . . . . . . . . . . 7 2.2.2 Respiration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.3 Motion Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.4 Body Temperature and Perspiration . . . . . . . . . . . . . . . . . . 15 2.3 Wireless Transmission Technologies . . . . . . . . . . . . . . . . . . . . . . 16 2.3.1 Bluetooth Low Energy (BLE) . . . . . . . . . . . . . . . . . . . . . 16 2.3.2 BLE Protocol Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.3 BLE Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3 Proposed Wearable Sensing System 21 3.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Sensing Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2.1 Front-end Sensor (ADS1292R) . . . . . . . . . . . . . . . . . . . . . 24 3.2.2 9-axis Sensor (BHI160 and BMM150) . . . . . . . . . . . . . . . . . 33 3.2.3 3-axis Sensor (BMA253) . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.4 Temperature and Humidity Sensor (HDC2010) . . . . . . . . . . . . 38 3.3 Control-end and Wireless Interface . . . . . . . . . . . . . . . . . . . . . . . 40 3.3.1 Microcontroller (MSP432P401R) . . . . . . . . . . . . . . . . . . . 41 3.3.2 Wireless Interface (CC2640R2F) . . . . . . . . . . . . . . . . . . . . 45 3.4 Firmware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4.1 TI-RTOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4.2 Multithread Implementation . . . . . . . . . . . . . . . . . . . . . . 48 3.4.3 QRS Complex Detection . . . . . . . . . . . . . . . . . . . . . . . . 50 3.5 Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.5.1 Idle Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.5.2 ECG-9axis Mode and ECG-3axis Mode . . . . . . . . . . . . . . . . 55 3.5.3 Storing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.6 Robust Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.6.1 Reconnecting Mechanism . . . . . . . . . . . . . . . . . . . . . . . 56 3.6.2 ECG Quality Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.7 Low Power Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.7.1 Threads Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.7.2 Data Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.7.3 Heart Rate Version . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.8 System Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4 Implementation and Evaluation Results 69 4.1 Evaluation Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.1.1 Board Appearance . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.1.2 Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.1.3 Circuit Simplification . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.2 Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.3 QRS Complex Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5 Conclusions and Future Works 97 5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

    [1] U. Nations. (2017) World population ageing 2017 highlights. Department of Economic
    and Social Affairs. [Online]. Available: http://www.un.org/en/development/desa/
    population/publications/pdf/ageing/WPA2017_Highlights.pdf
    [2] S. Majumder, T. Mondal, and M. J. Deen, “Wearable sensors for remote health monitor-
    ing,” Sensors, vol. 17, no. 1, p. 130, 2017.
    [3] (2018) Apple watch series 3. Apple. [Online]. Available: https://support.apple.com/kb/
    SP766?viewlocale=zh_TW&locale=zh_K
    [4] (2018) Mi band 2. Mi. [Online]. Available: http://www.mi.com/tw/miband2/
    [5] (2018) Fitbit alta. Fitbit. [Online]. Available: https://www.fitbit.com/tw/alta#features
    [6] (2018) Rainbow S18. Rainbow. [Online]. Available: https://www.rainbow88shop.com/
    products/rainbow-s18-%E4%BA%8C%E4%BB%A3-%E6%99%BA%E8%83%BD%
    E6%89%8B%E7%92%B0
    [7] M. Caldara, D. Comotti, L. Gaioni, A. Pedrana, M. Pezzoli, V. Re, and G. Traversi,
    “Development of a multi-lead ECG wearable sensor system for biomedical applications,”
    in 2017 7th IEEE International Workshop, Advances in Sensors and Interfaces (IWASI),
    2017, pp. 207–212.
    [8] S. Korsakas, J. Lauznis, A. Vainoras, Z. Markovitch, L. Gargasas, Z. Navickas, and
    R. Ruseckas, “The mobile ECG and motion activity monitoring system for home care
    patients,” in 2006 IEEE, Computers in Cardiology, 2006, pp. 833–836.
    [9] S.-C. Lee and W.-Y. Chung, “A robust wearable u-healthcare platform in wireless sensor
    network,” Journal of Communications and Networks, vol. 16, no. 4, pp. 465–474, 2014.
    [10] M. K. Delano and C. G. Sodini, “A long-term wearable electrocardiogram measurement
    system,” in 2013 IEEE International Conference, Body Sensor Networks (BSN), 2013,
    pp. 1–6.
    [11] F. Massé, M. V. Bussel, A. Serteyn, J. Arends, and J. Penders, “Miniaturized wireless
    ECG monitor for real-time detection of epileptic seizures,” ACM Transactions on Em-
    bedded Computing Systems (TECS), vol. 12, no. 4, p. 102, 2013.
    [12] A. Carroll, G. Heiser et al., “An analysis of power consumption in a smartphone.” in
    USENIX annual technical conference, vol. 14. Boston, MA, 2010, pp. 21–21.
    [13] L.-H. Wang, W.-Z. Dong, J.-Z. Chen, F.-X. Wang, and M.-H. Fan, “Low-power low-data-
    loss bio-signal acquisition system for intelligent electrocardiogram detection,” IEICE
    Electronics Express, vol. 14, no. 4, pp. 20 161 142–20 161 142, 2017.
    [14] M. Magno, M. Pritz, P. Mayer, and L. Benini, “Deepemote: Towards multi-layer neural
    networks in a low power wearable multi-sensors bracelet,” in 2017 7th IEEE Interna-
    tional Workshop, Advances in Sensors and Interfaces (IWASI), 2017, pp. 32–37.
    [15] Y. Wang, S. Doleschel, R. Wunderlich, and S. Heinen, “A wearable wireless ECG moni-
    toring system with dynamic transmission power control for long-term homecare,” Jour-
    nal of medical systems, vol. 39, no. 3, p. 35, 2015.
    [16] B. Zhou, X. Chen, X. Hu, R. Ren, X. Tan, Z. Fang, and S. Xia, “A Bluetooth low energy
    approach for monitoring electrocardiography and respiration,” in 2013 IEEE 15th Inter-
    national Conference, e-Health Networking, Applications & Services (Healthcom), 2013,
    pp. 130–134.
    [17] C. H. Wang, “Design and implementation of low-energy configurable integrated physi-
    ological sensing system for wearable applications,” Master’s thesis, National Tsing Hua
    University, Hsinchu, Taiwan, 2015.
    [18] I. H. Chen, “Design and implementation of a low-energy wearable physiological sensor,”
    Master’s thesis, National Tsing Hua University, Hsinchu, Taiwan, 2016.
    [19] C. Y. Chen, “An ultra low-power wearable sensor for physiological signal monitoring,”
    Master’s thesis, National Tsing Hua University, Hsinchu, Taiwan, 2017.
    [20] G. Pizzuti, S. Cifaldi, and G. Nolfe, “Digital sampling rate and ECG analysis,” Journal
    of biomedical engineering, vol. 7, no. 3, pp. 247–250, 1985.
    [21] J. Malmivuo and R. Plonsey, Bioelectromagnetism: principles and applications of bio-
    electric and biomagnetic fields. Oxford University Press, USA, 1995.
    [22] J. E. Hall, Guyton and Hall textbook of medical physiology. Elsevier Health Sciences,
    2010.
    [23] K. E. Barrett, “Ganong’s review of medical physiology,” 2010.
    [24] K. M. Heussner. (2013, Sep) Could a breath-monitoring headset improve
    your health? Gigaom. [Online]. Available: https://gigaom.com/2013/09/20/
    could-a-breath-monitoring-headset-improve-your-health/
    [25] P. De Chazal, E. O’Hare, N. Fox, and C. Heneghan, “Assessment of sleep/wake pat-
    terns using a non-contact biomotion sensor,” in 2008 IEEE 30th Annual International
    Conference, Engineering in Medicine and Biology Society, 2008, pp. 514–517.
    [26] Respiration Rate Measurement Based on Impedance Pneumography, Texas Instruments,
    2011.
    [27] H. Zhou and H. Hu, “Human motion tracking for rehabilitation—a survey,” Biomedical
    Signal Processing and Control, vol. 3, no. 1, pp. 1–18, 2008.
    [28] R. O’Reilly, A. Khenkin, and K. Harney, “Sonic nirvana: Using MEMS accelerometers
    as acoustic pickups in musical instruments,” Analog Dialogue, vol. 43, 2009.
    [29] M. Andrejašic, “MEMS accelerometers,” in University of Ljubljana. Faculty for mathe-
    matics and physics, Department of physics, Seminar, 2008.
    [30] D. Strle and V. Kempe, “MEMS-based inertial systems,” INFORMACIJE MIDEM-
    LJUBLJANA-, vol. 37, no. 4, p. 199, 2007.
    [31] J. Geen and D. Krakauer, “New iMEMS® angular-rate-sensing gyroscope,” Analog Di-
    alogue, vol. 37, no. 3, pp. 1–4, 2003.
    [32] Measuring magnetic fields. [Online]. Available: https://www.nde-ed.org/
    EducationResources/CommunityCollege/MagParticle/Physics/Measuring.htm
    [33] P. Mannion. (2017, Oct) Comparing low-power wireless technologies. Digi-
    Key. [Online]. Available: https://www.digikey.com/en/articles/techzone/2017/oct/
    comparing-low-power-wireless-technologies
    [34] CC2640R2F SimpleLink Bluetooth low energy Wireless MCU, Texas Instruments, Dec
    2016, [Revised Jan 2017].
    [35] CC2652R SimpleLink Multiprotocol 2.4-GHz Wireless MCU, Texas Instruments, Jan
    2018.
    [36] Sagawa. (2013, Sep) Quick thoughts: For payments, Bluetooth puts
    a beat down on NFC and WiFis. [Online]. Available: http://ssrllc.com/
    quick-thoughts-for-payments-bluetooth-puts-a-beat-down-on-nfc-and-wifi/
    [37] (2016, Nov) ZigBee in home automation. CCTV Institude. [Online]. Available:
    http://cctvinstitute.co.uk/zigbee/
    [38] C. Gomez, J. Oller, and J. Paradells, “Overview and evaluation of Bluetooth low energy:
    An emerging low-power wireless technology,” Sensors, vol. 12, no. 9, pp. 11 734–11 753,
    2012.
    [39] Bluetooth 5 Go Faster. Go Futher., Bluetooth SIG, 2018.
    [40] CC2640 and CC2650 SimpleLink Bluetooth low energy Software Stack 2.2.1 Developer’s
    Guide, Texas Instruments, Oct 2016.
    [41] Low-Power, 2-Channel, 24-Bit Analog Front-End for Biopotential Measurements, Texas
    Instruments, Dec. 2011, [Revised Sep 2012].
    [42] BHI160 Ultra-low power sensor hub incl. integrated IMU, Bosch Sensortec, Jul. 2016,
    rev. 1.0.
    [43] BMA253 Digital, triaxial acceleration sensor, Bosch Sensortec, Aug. 2015, rev. 1.0.
    [44] HDC2010 Low Power Humidity and Temperature Digital Sensors, Texas Instruments,
    Jul. 2017.
    [45] MSP432P401R, MSP432P401M SimpleLink Mixed-Signal Microcontrollers, Texas In-
    struments, Mar. 2015, [Revised Mar 2017].
    [46] Designing an Ultra-Low-Power (ULP) Application With SimpleLink MSP432 Microcon-
    trollers, Texas Instruments, Mar. 2015, [Revised Mar 2017].
    [47] MSP432P4xx SimpleLink Microcontrollers Technical Reference Manual, Texas Instru-
    ments, Mar. 2015, [Revised Mar 2017].
    [48] General RTOS concepts. Texas Instruments. [Online]. Avail-
    able: http://dev.ti.com/tirex/content/simplelink_academy_msp432sdk_1_15_02_00/
    modules/rtos_concepts/rtos_concepts.html
    [49] TI-RTOS 2.20 User’s Guide, Texas Instruments, Jun. 2016.
    [50] C. C. Chan, “A diagnostic grade mobile healthcare platform,” Master’s thesis, National
    Tsing Hua University, Hsinchu, Taiwan, 2013.
    [51] V. Krasteva and I. Jekova, “Assessment of ECG frequency and morphology parameters
    for automatic classification of life-threatening cardiac arrhythmias,” Physiological mea-
    surement, vol. 26, no. 5, p. 707, 2005.
    [52] C.-H. Lin, “Frequency-domain features for ECG beat discrimination using grey relational
    analysis-based classifier,” Computers & Mathematics with Applications, vol. 55, no. 4,
    pp. 680–690, 2008.
    [53] F. G. Yanowitz, “Introduction to ECG interpretation,” LDS Hospital and Intermountain
    Medical Center, 2012.
    [54] Q. Li, R. G. Mark, and G. D. Clifford, “Robust heart rate estimation from multiple asyn-
    chronous noisy sources using signal quality indices and a kalman filter,” Physiological
    measurement, vol. 29, no. 1, p. 15, 2007.
    [55] C. Orphanidou, T. Bonnici, P. Charlton, D. Clifton, D. Vallance, and L. Tarassenko,
    “Signal-quality indices for the electrocardiogram and photoplethysmogram: Derivation
    and applications to wireless monitoring,” IEEE journal of biomedical and health infor-
    matics, vol. 19, no. 3, pp. 832–838, 2015.
    [56] K. R. Barker, “Method of monitoring patient respiration and predicting apnea therefrom,”
    Dec. 28 1982, uS Patent 4,365,636.
    [57] R. Paradiso, G. Loriga, and N. Taccini, “A wearable health care system based on knitted
    integrated sensors,” IEEE transactions on Information Technology in biomedicine, vol. 9,
    no. 3, pp. 337–344, 2005.
    [58] G. T. Lu, “A multifunction mobile information hub for physiological signals monitoring,”
    Master’s thesis, National Tsing Hua University, Hsinchu, Taiwan, 2016.
    [59] LTC2954 Push Button On/Off Controller with μP Interrupt, Linear Technology, 2006,
    [Rev. B].
    [60] Accessory Design Guidelines for Apple Devices, Apple, Mar. 2018, release R5.

    QR CODE