簡易檢索 / 詳目顯示

研究生: 馮元詰
Fong, Yuan-Jie
論文名稱: 評估軟件代碼活動與代碼適應性之間的縱向關係: 基於系統 GMM 的動態面板數據方法
Assessing the Longitudinal Relationship between Software Code Activity and Code Adaptability: A Dynamic Panel Data Approach with System GMM
指導教授: 雷松亞
Ray, Soum-Ya
口試委員: 兪在元
Yoo, Jaewon
尼古拉斯
Danks, Nicholas
學位類別: 碩士
Master
系所名稱: 科技管理學院 - 服務科學研究所
Institute of Service Science
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 48
中文關鍵詞: 軟體代碼活動代碼適應性系統 GMM動態面板數據技術 債務
外文關鍵詞: Software code activity, code adaptability, system GMM, dynamic panel data, technical debt
相關次數: 點閱:74下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討了軟體代碼活動與代碼適應性之間的縱向關係,使用系統 GMM 的動態面板數據方法進行分析。研究發現,代碼適應性對代碼活動具有持續的 負面影響,且這一影響隨時間呈現單調遞減的趨勢。此外,研究還證實了代碼 活動的滯後效應,以及時間和團隊固定效應在項目開發過程中對代碼活動的影 響。研究結果對於軟體開發中的項目管理策略和資源分配決策具有重要意義, 強調了維持代碼適應性的持續需求。


    This study investigates the longitudinal relationship between software code activity and code adaptability, using a dynamic panel data approach with system GMM. The research findings indicate that code adaptability has a persistent negative impact on code activity, with this effect decreasing monotonically over time. Additionally, the study confirms the lagged effect of code activity and the influence of time and team fixed effects during the project development process. These findings have significant implications for project management strategies and resource allocation decisions in software development, emphasizing the ongoing need to maintain code adaptability.

    致謝 I 摘要 II Abstract III Contents IV List of Figures VI List of Tables VII 1 Introduction 1 2 Literature review 4 2.1 CodeAdaptability ........................... 4 2.2 CodeActivity.............................. 9 3 Empirical Model 13 3.1 RubyGems ............................... 13 3.2 Measuring Code Adaptability Using Static Analysis . . . . . . . . 14 3.2.1 Rubocop............................. 15 3.2.2 Flog............................... 15 3.2.3 GunningFogIndex....................... 16 3.3 MeasuringCodeActivity........................ 16 3.4 RelationalModel ............................ 17 4 Empirical Study 20 4.1 DataCollection............................. 20 4.2 DataPost-processing.......................... 22 4.3 EmpiricalResultsandAnalysis .................... 26 4.3.1 OLSRegressionModel..................... 27 4.3.2 FixedEffectModel....................... 27 4.3.3 SystemGMM.......................... 29 5 Discussion 39 6 Future Work and Conclusions 42 References 44

    Andrade-Rojas, M. G., Saldanha, T. J., Kathuria, A., Khuntia, J., and Boh, W. (2024). How information technology overcomes deficiencies for innovation in small and medium-sized enterprises: Closed innovation vs. open innovation. Information Systems Research.
    Arellano, M. and Bond, S. (1991). Some tests of specification for panel data: Monte carlo evidence and an application to employment equations. The Review of Economic Studies, 58(2):277–297.
    Arellano, M. and Bover, O. (1995). Another look at the instrumental variable estimation of error-components models. Journal of Econometrics, 68(1):29–51.
    Banker, R., Liang, Y., and Ramasubbu, N. (2021). Technical debt and firm per- formance. Management Science, 67(5):3174–3194.
    Bansiya, J. and Davis, C. G. (2002). A hierarchical model for object-oriented design quality assessment. IEEE Transactions on Software Engineering, 28(1):4–17.
    Blundell, R. and Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics, 87(1):115–143.
    Chen, J. C. and Huang, S. J. (2009). An empirical analysis of the impact of software development problem factors on software maintainability. Journal of Systems and Software, 82(6):981–992.
    Chidamber, S. R. and Kemerer, C. F. (1994). A metrics suite for object oriented design. IEEE Transactions on Software Engineering, 20(6):476–493.
    Coelho, J., Valente, M. T., Milen, L., and Silva, L. L. (2020). Is this github project maintained? measuring the level of maintenance activity of open-source projects. Information and Software Technology, 122:106274.
    Constantinou, E. and Mens, T. (2017). Socio-technical evolution of the ruby ecosystem in github. In 2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER), pages 34–44. IEEE.
    Conti, A., Gupta, V., Guzman, J., and Roche, M. P. (2023). Incentivizing inno- vation in open source: Evidence from the github sponsors program. Technical Report w31668, National Bureau of Economic Research.
    Cunningham, W. (1992). The wycash portfolio management system. ACM Sigplan Oops Messenger, 4(2):29–30.
    Dabbish, L., Stuart, C., Tsay, J., and Herbsleb, J. (2012). Social coding in github: transparency and collaboration in an open software repository. In Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work, pages 1277–1286.
    Davidsen, M. K. and Krogstie, J. (2010). A longitudinal study of development and maintenance. Information and Software Technology, 52(7):707–719.
    Hall, G. A. and Munson, J. C. (2000). Software evolution: code delta and code churn. Journal of Systems and Software, 54(2):111–118.
    Hausman, J. A. (1978). Specification tests in econometrics. Econometrica: Journal of the Econometric Society, pages 1251–1271.

    ISO, I. (2011). Systems and Software Engineering: Systems and Software Quality Requirements and Evaluation (SQuaRE): System and Software Quality Models. ISO.
    Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20(1):141–151.
    Kruchten, P., Nord, R. L., and Ozkaya, I. (2012). Technical debt: From metaphor to theory and practice. IEEE Software, 29(6):18–21.
    Lee, M. G. and Jefferson, T. L. (2005). An empirical study of software maintenance of a web-based java application. In 21st IEEE International Conference on Software Maintenance (ICSM’05), pages 571–576. IEEE.
    Lin, T. Y. (2023). Developing a Composite Measurement for Software Adaptability: An Exploration of Code Quality Metrics and Explanatory Model of Code Activity in Open Source Software Packages. PhD thesis, National Tsing Hua University. Unpublished master’s thesis.
    Mertens, W., Pugliese, A., and Recker, J. (2017). Causality: Endogeneity bi- ases and possible remedies. In Quantitative Data Analysis: A Companion for Accounting and Information Systems Research, pages 99–134.
    Mockus, A. and Weiss, D. M. (2000). Predicting risk of software changes. Bell Labs Technical Journal, 5(2):169–180.
    Mustonen-Ollila, E. and Lyytinen, K. (2003). Why organizations adopt informa- tion system process innovations: a longitudinal study using diffusion of innova- tion theory. Information Systems Journal, 13(3):275–297.
    Raymond, E. (1999). The cathedral and the bazaar. Knowledge, Technology & Policy, 12(3):23–49.
    Roodman, D. (2009). How to do xtabond2: An introduction to difference and system gmm in stata. The Stata Journal, 9(1):86–136.
    Russo, D., Hanel, P. H., Altnickel, S., and van Berkel, N. (2023). Satisfaction and performance of software developers during enforced work from home in the covid-19 pandemic. Empirical Software Engineering, 28(2):53.
    Sherer, S. A. (1992). Cost benefit analysis and the art of software maintenance. In Proceedings Conference on Software Maintenance 1992, pages 70–71. IEEE Computer Society.
    Sinha, S. (2022). Regulating and Managing Open Innovation: A Study of Open Source Software. Doctoral dissertation, ETH Zurich.
    Smit, M., Gergel, B., Hoover, H. J., and Stroulia, E. (2011). Code convention adherence in evolving software. In 2011 27th IEEE International Conference on Software Maintenance (ICSM), pages 504–507. IEEE.
    Sousa, M. J. C. and Moreira, H. M. (1998). A survey on the software maintenance process. In Proceedings. International Conference on Software Maintenance (Cat. No. 98CB36272), pages 265–274. IEEE.
    Tarafdar, M. and Gordon, S. R. (2007). Understanding the influence of informa- tion systems competencies on process innovation: A resource-based view. The Journal of Strategic Information Systems, 16(4):353–392.
    Tom, E., Aurum, A., and Vidgen, R. (2013). An exploration of technical debt. Journal of Systems and Software, 86(6):1498–1516.
    Ullah, S., Akhtar, P., and Zaefarian, G. (2018). Dealing with endogeneity bias: The generalized method of moments (gmm) for panel data. Industrial Marketing Management, 71:69–78.
    Vasilescu, B., Yu, Y., Wang, H., Devanbu, P., and Filkov, V. (2015). Quality and productivity outcomes relating to continuous integration in github. In Proceed- ings of the 2015 10th Joint Meeting on Foundations of Software Engineering, pages 805–816. IEEE.

    QR CODE