研究生: |
詹宗晟 Chan, Tsung-Cheng |
---|---|
論文名稱: |
奈米雙晶結構銅膜與奈米線之製備與性質研究 Fabrication and Characterization of Nanotwinned Copper Films and Nanowires |
指導教授: |
廖建能
Liao, Chien-Neng 闕郁倫 Chueh, Yu-Lun |
口試委員: |
林樹均
陳智 歐陽汎怡 吳文偉 郭瑞昭 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 107 |
中文關鍵詞: | 銅製程 、雙晶 、奈米線 、機械性質 、電遷移 、離子轟擊 |
外文關鍵詞: | Cu metallization, Twin, Nanowires, Mechanical property, Electromigration, Ion bombardment |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
應用在下世代積體元件中的氣隙型內連接導線結構或3D封裝技術之一的矽穿孔皆需要擁有高機械強度,低電阻率的導線材料來支撐整體結構與維持低時間延遲(RC delay)。 最近研究指出奈米雙晶銅不僅擁有高機械強度與低電阻率,同時也具有抗電遷移的特性,因此被認為是下一世代積體元件中內連接導線的候選材料之一。 高密度雙晶結構藉由脈衝電鍍與低溫下高能量氬離子轟擊引入銅膜與銅奈米線中,其硬度與雙晶晶界間距存在著類似於Hall-Petch關係式一樣的關係,此外,藉由調配硫酸銅電鍍液中之氯離子濃度,本研究可以控制銅膜之晶體優選方向,隨著電鍍液中的氯離子濃度增加,在直流電鍍銅膜中,{110}之結晶方向呈現穩定增強,而在脈衝電鍍銅膜中,則在氯離子10−4 – 10−5體積莫耳濃度間呈現出{111}與{110}優選結晶方向之轉變。 基於不同晶面擁有不同交換電流密度與脈衝電鍍製程中的工作周期效應之物理機制來解釋為何奈米雙晶電鍍銅膜之優選結晶方向會受到電鍍液中氯離子濃度改變而轉變。在另外一方面,藉由陽極氧化鋁為模板,竹節狀奈米雙晶銅奈米線可以利用低溫下脈衝電鍍法製備。在脈衝電流密度為0.4 A/cm2下,雙晶晶界間距的平均值僅為14.6 奈米。高密度雙晶之形成機制可歸於為了釋放在電鍍過程中所引發之應力與在二維成長模型中,堆疊出錯所造成的。而此高密度雙晶銅奈米線可承受高達2.4 × 108 A/cm2 的電流密度。電遷移所造成的銅原子移動於雙晶晶界會被延遲,因此延長孔洞佔據整個奈米線所需要的時間進而提升其電流承受度。
對於利用離子轟擊所製備的奈米雙晶銅而言,雙晶晶界-差排與差排-差排間的交互作用都會對於其高硬度有不可忽視之貢獻。此外,離子轟擊所引發之機械性質強化區域可以延伸到轟擊面以下數百奈米。一個基於在離子轟擊過程中熱震(thermal spike)所引發之應力來解釋離子能量與轟擊溫度對於雙晶晶界形成的影響。由於擁有高的機械強度和良好的電流承受密度,奈米雙晶銅成為應用在先進奈微米元件中互連接導線的淺力材料之一。
An air-gap structure or through silicon via (TSV) employed in interconnect technology of integrated-circuits requires interconnecting materials of high mechanical strength and low electrical resistivity. Recently, Cu with nano-scaled twins has been intensively researched due to its high yield strength, good ductility and reasonably low electrical resistivity. In addition, electromigration-induced atomic diffusion would be slowed down at the twin-modified grain boundary in Cu line, which may improve electromigration resistance of Cu interconnects. In this study, dense nanoscale twins were introduced in copper films and nanowires through pulse electrodeposition and bombardment of high-energy Ar+ ions at low temperatures. In the electrodeposited nanotwinned Cu films, the nanoindentation hardness increases inversely with the square root of twin lamella width, and follows the Hall-Petch like relationship. In addition, crystallographic texture of nanotwinned Cu films was achieved through adjustment of chloride concentration in copper sulfate electrolyte using direct-current and pulsed-current deposition methods. With increasing chloride concentration in the electrolyte the DC-deposited Cu film showed a monotonically strengthening {110} crystallographic texture, while the PC-deposited one revealed a {111} to {110} transition at the chloride concentration of 10−4 – 10−5 M. We found that change of Cu film texture with varying chloride concentration is attributed to the distinct exchange current density of different Cu crystallographic planes and duty cycle of pulse current. On the other hand, bamboo-like nanotwinned Cu nanowires with 55 nm in diameter were fabricated by pulse electrodeposition at low temperature with anodic aluminum oxide as template. At pulse current density of 0.4 A/cm2, the mean value of twin-lamella width is only 14.6 nm. The formation of high density of twin boundaries (TBs) is attributed to relaxation of coalescence induced stress and twin fault stacking when Cu NWs grow under two-dimensional kinetics. The endurance of electrical current density before breakdown of nanotwinned Cu NWs reaches 2.4 × 108 A/cm2, which is comparable with carbon nanotubes or graphene nanoribbons. The suppression of electromigration induced void growth at triple junction where twin boundaries meet surface or grain boundaries is responsible for the raise of failure current density.
Besides, both TB-dislocation and dislocation-dislocation interactions contribute to the strengthening of ion-irradiated Cu films. The strengthened region can be extended to several hundreds of nanometers below the irradiated surface of embedded nanowires and patterned lines. A mechanism based on thermal-spike induced stress is proposed to explain the influences of ion energy and bombardment temperature on the formation of nanotwins. With the advantages of high mechanical strength and good electric endurance, nanotwinned Cu becomes a good candidate of interconnect material for advanced micro- and nano-electronic devices.
[1] International Technology Roadmap for Semiconductors, 2012 edition. (http://www.itrs.net/reports.html)
[2] Tu, K. N. “Recent advances on electromigration in very-large-scale-integration of interconnects”, J. Appl. Phys. 2003, 94, 5451.
[3] Xu, L.; Dixit, P.; Miao, J.; Pang, J. H. L.; Zhang, X.; Tu, K. N.; Preisser, R. “Through-wafer electroplated copper interconnect with ultrafine grains and high density of nanotwins”, Appl. Phys. Lett. 2007, 90, 033111.
[4] Lu, L.; Shen, Y.; Chen, X.; Qian, L.; Lu, K. “Ultrahigh strength and high electrical conductivity in copper”, Science 2004, 304, 422.
[5] Hsiao, H. Y.; Liu, C. M.; Lin, H. W.; Liu, T. C.; Lu, C. L.; Huang, Y. S.; Chen, C.; Tu, K. N. “Unidirectional Growth of Microbumps on (111)-Oriented and Nanotwinned Copper”, Science 2012, 336, 1007.
[6] Zhang, X.; Wang, H.; Chen, X. H.; Lu, L.; Lu, K.; Hoagland, R. G.; Misra, A. “High-strength sputter-deposited Cu foils with preferred orientation of nanoscale growth twins”, Appl. Phys. Lett. 2006, 88, 173116.
[7] Anderoglu, O.; Misra, A.; Ronning, F.; Wang, H.; Zhang, X. “Significant enhancement of the strength-to-resistivity ratio by nanotwins in epitaxial Cu films”, J. Appl. Phys. 2009, 106, 024313.
[8] Wang, K.; Tao, N. R.; Liu, G.; Lu, J.; Lu, K. “Plastic strain-induced grain refinement at the nanometer scale in copper”, Acta Mater. 2006, 54, 5281.
[9] Chen, K. C.; Wu, W. W.; Liao, C. N.; Chen, L. J.; Tu, K. N. “Observation of Atomic Diffusion at Twin-Modified Grain Boundaries in Copper”, Science 2008, 321, 1066.
[10] Sun, T.; Yao, B.; Warren, A. P.; Barmak, K.; Toney, M. F.; Peale, R. E.; Coffey, K. R. “Surface and grain-boundary scattering in nanometric Cu films”, Phys. Rev. B 2010, 81, 155454.
[11] Sukharev, V.; Kteyan, A.; Zschech, E.; Nix, W. D. “Microstructure Effect on EM-Induced Degradations in Dual Inlaid Copper Interconnects”, IEEE. Trans. Device Mater. Rel. 2009, 9, 87.
[12] Strehle, S.; Bartha, J. W.; Wetzig, K. “Electrical properties of electroplated Cu(Ag) thin films”, Thin Solid Films 2009, 517, 3320.
[13] Cui, B. Z.; Han, K.; Xin, Y.; Waryoba, D. R.; Mbaruku, A. L. “Highly textured and twinned Cu films fabricated by pulsed electrodeposition”, Acta Mater. 2007, 55, 4429.
[14] Kremmer, K.; Yezerska, O.; Schreiber, G.; Masimov, M.; Klemm, V.; Schneider, M.; Rafaja, D. “Interplay between the deposition mode and microstructure in electrochemically deposited Cu thin films”, Thin Solid Films 2007, 515, 6698.
[15] Chan, T. C.; Chueh, Y. L.; Liao,C. N. “Manipulating the Crystallographic Texture of Nanotwinned Cu Films by Electrodeposition”, Cryst. Growth & Des. 2011, 11, 4970.
[16] Mahajan, S.; Pande, C. S.; Iman, M. A.; Rath, B. B. “Formation of annealing twins in f.c.c. crystals”, Acta Mater. 1997, 45, 2633.
[17] Zhu, Y. T.; Liao, X. Z.; Wu, X. L. “Deformation twinning in nanocrystalline materials”, Prog. Mater. Sci. 2012, 57, 1.
[18] Jang, D. Li, X.; Gao, H.; Greer, J. R. “Deformation mechanisms in nanotwinned metal nanopillars”, Nature Nanotech. 2012, 7, 594.
[19] Zhong, S.; Koch, T.; Wang, M.; Scherer, T.; Walheim, S.; Hahn, H.; Schimmel, T. “Nanoscale twinned copper nanowire formation by direct electrodeposition”, Small 2009, 5, 2265.
[20] Liao, C. N.; Lu, Y. C.; Xu, D. “Modulation of Crystallographic Texture and Twinning Structure of Cu Nanowires by Electrodeposition”, J. Electrochem. Soc. 2013, 160, D207.
[21] Zhao, J.; Sun, H.; Dai, S.; Wang, Y.; Zhu, J. “Electrical Breakdown of Nanowires”, Nano Lett. 2011, 11, 4647.
[22] Wiley, B. J.; Wang, Z.; Wei, J.; Yin, Y.; Cobden, D. H.; Xia,Y. “Synthesis and Electrical Characterization of Silver Nanobeams”, Nano Lett. 2006, 6, 2273.
[23] Huang, Q.; Lilley, C. M.; Bode, M.; Divan, R. “Surface and size effects on the electrical properties of Cu nanowires”, J. Appl. Phys. 2008, 104, 023709.
[24] Liu, X.; Zhu, J.; Jin, C.; Peng, L. M.; Tang, D.; Cheng, H. “In situ electrical measurements of polytypic silver nanowires”, Nanotechnology 2008, 19, 085711.
[25] Zhu, Y. T.; Narayan, J.; Hirth, J. P.; Mahajan, S.; Wu, X. L.; Liao, X. Z. “ Formation of single and multiple deformation twins in nanocrystalline fcc metals”, Acta Mater. 2009, 57, 3763.
[26] Li, Y. S.; Zhang, Y.; Tao, N. R.; Lu, K. “Effect of the Zener–Hollomon parameter on the microstructures and mechanical properties of Cu subjected to plastic deformation”, Acta Mater. 2009, 57, 761.
[27] Meyers, M. A.; Vöhringer, O.; Lubarda, V. A. “The onset of twinning in metals: a constitutive description”, Acta Mater. 2001, 49, 4025.
[28] Sriram, V.; Yang, J. M.; Ye, J.; Minor, A. M. “Determining the stress required for deformation twinning in Nanocrystalline and Ultrafine-grained copper”, JOM 2008, 60, 66.
[29] Ramana Murty, M. V.; Curcic, T.; Judy, A.; Cooper, B. H.; Woll, A. R.; Brock, J. D. et al. “X-Ray Scattering Study of the Surface Morphology of Au(111) during Ar+ Ion Irradiation”, Phys. Rev. Lett. 1998, 80, 4713.
[30] Rusponi, S.; Boragno, C.; Valbusa, U. “Ripple Structure on Ag(110) Surface Induced by Ion Sputtering”, Phys. Rev. Lett. 1997, 78, 2795.
[31] Han, W. Z.; Demkowicz, M. J.; Fu, E. G.; Wang, Y. Q.; Misra, A. “Effect of grain boundary character on sink efficiency”, Acta Mater. 2012, 60, 6341.
[32] Kaoumi, D.; Motta, A. T.; Birtcher, R. C. “A thermal spike model of grain growth under irradiation”, J. Appl. Phys. 2008, 104, 073525.
[33] Spolenak, R.; Perez Prado, M. T. “Single crystal like thin films by selective ion-induced grain growth”, Scr. Mater. 2006, 55, 103.
[34] Seita, M.; Muff, D.; Spolenak, R. “Multi-directional self-ion irradiation of thin gold films: A new strategy for achieving full texture”, Acta Mater. 2011, 59, 5351.
[35] Seita, M.; Reiser, A.; Spolenak, R. “Ion-induced grain growth and texturing in refractory thin films-A low temperature process”, Appl. Phys. Lett. 2012, 101, 251905.
[36] Ghaly, M.; Averback, R. S. “Effect of viscous flow on ion damage near solid surfaces”, Phys. Rev. Lett. 1994, 72, 364.
[37] Hsieh, H. M.; Diaz de la Rubia, T.; Averback, R. S.; Benedek, R. “Effect of temperature on the dynamics of energetic displacement cascades: A molecular dynamics study”, Phys. Rev. B 1989, 40, 9986.
[38] Diaz de la Rubia, T.; Averback, R. S.; Hsieh, H. M.; Benedek, R. “Molecular dynamics simulation of displacement cascades in Cu and Ni: Thermal spike behavior”, J. Mater. Res. 1989, 4, 579.
[39] Averback, R. S.; Ghaly, M. “A model for surface damage in ion‐irradiated solids”, J. Appl. Phys. 1994, 76, 3908.
[40] Dietiker, M.; Olliges, S.; Schinhammer, M.; Seita, M.; Spolenak, R. “Texture evolution and mechanical properties of ion-irradiated Au thin films”, Acta Mater. 2009, 57, 4009.
[41] Lu, L.; Chen, X.; Huang, X.; Lu, K. “Revealing the Maximum Strength in Nanotwinned Copper”, Science 2009, 323, 607.
[42] Li, X.; Wei, Y.; Lu, L.; Lu, K.; Gao, H. “Dislocation nucleation governed softening and maximum strength in nano-twinned metals”, Nature 2010, 464, 877.
[43] Chen, K. C.; Wu, W. W.; Liao, C. N.; Chen, L. J.; Tu, K. N. “Stability of nanoscale twins in copper under electric current stressing”, J. Appl. Phys. 2010, 108, 066103.
[44] Xu, D.; Kwan, W. L.; Chen, K.; Zhang, X.; Ozolins, V.; Tu, K. N. “Nanotwin formation in copper thin films by stress strain relaxation in pulse electrodeposition”, Appl. Phys. Lett. 2007, 91, 254105.
[45] Xu, D.; Sriram, V.; Ozolins, V.; Yang, J. M.; Tu, K. N.; Stafford, G. R.; Beauchamp, C. “In situ measurements of stress evolution for nanotwin formation during pulse electrodeposition of copper”, J. Appl. Phys. 2009, 105, 023521.
[46] Liu, T. C.; Liu, C. M.; Hsiao, H. Y.; Lu, J. L.; Huang, Y. S.; Chen, C. “Fabrication and Characterization of (111)-Oriented and Nanotwinned Cu by Dc Electrodeposition”, Cryst. Growth & Des. 2012, 12, 5012.
[47] Zhang, X.; Misra, A.; Wang, H.; Shen, T. D.; Nastasi, M.; Mitchell, T. E.; Hirth, J. P.; Hoagland, R. G.; Embury, J. D. “Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning”, Acta Mater. 2004, 52, 995.
[48] Bufford, D.; Wang, H.; Zhang, X. “High strength, epitaxial nanotwinned Ag films”, Acta Mater. 2011, 59, 93.
[49] Zhang, X.; Anderoglu, O.; Misra, A.; Wang, H. “Influence of deposition rate on the formation of growth twins in sputter-deposited 330 austenitic stainless steel films”, Appl. Phys. Lett. 2007, 90, 153101.
[50] Shute, C. J.; Myers, B. D.; Xie, S.; Barbee Jr., T. W.; Hodge, A. M.; Weertman, J. R. “Microstructural stability during cyclic loading of multilayer copper copper samples with nanoscale twinning”, Scr. Mater. 2009, 60, 1073.
[51] Anderoglu, O.; Misra, A.; Wang, H.; Ronning, F.; Hundley, M. F.; Zhang, X. “Epitaxial nanotwinned Cu films with high strength and high conductivity”, Appl. Phys. Lett. 2008, 93, 083108.
[52] Meyers, M. A.; Andrade, R. U.; Chokshi, H. A. “The effect of grain size on the high-strain, high-strain-rate behavior of copper”, Metall MaterTrans A, 1995, 26, 2881.
[53] Lu, K.; Lu, J. “Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment”, Mater. Sci. Eng. A, 2004, 375-377, 38.
[54] Wang, K.; Tao, N. R.; Liu, G.; Lu, J.; Lu, K. “Plastic strain-induced grain refinement at the nanometer scale in copper”, Acta Mater. 2006, 54, 5281.
[55] Seita, M “Full Microstructure Control Through Ion-Induced Grain Growth, Texturing and Constrained Deformation in Thin Metal Films”, Ph.D. thesis, 2012, ETH Zurich.
[56] Brinkman, J. A. “Production of Atomic Displacements by High-Energy Particles”, Amer. J. Phys. 1956, 24, 246.
[57] Fenn-Tye, I. A.; Marwick, A. D. “The dependence of cascade mixing in Pd on the projectile's mass”, Nucl. Instr. Meth. Phys. Res. B 1986, 18, 236.
[58] Gao, F.; Bacon, D. J. “Temperature effects on defect production and disordering by displacement cascades in Ni3Al”, Phil. Mag. A 2000, 80, 1453.
[59] Was, G. S. “Fundamentals of radiation materials science metals and alloys”, Springer Berlin Heidelberg New York, 2007.
[60] Olliges, S. “Mechanical Properties & Microstructure Optimization of Gold Nano-Interconnects”, Ph.D. thesis, 2007, ETH Zurich.
[61] Hong, B.; Jiang, C. H.; Wang, X. J. “Influence of complexing agents on texture formation of electrodeposited copper”, Surf. Coat. Tech. 2007, 201, 7449.
[62] Rasmussen, A. A.; Jensen, J. A. D.; Horsewell, A.; Somers, M. A. J. “Microstructure in electrodeposited copper layers; the role of the substrate”, Electrochim. Acta 2001, 47, 67.
[63] Shao, W.; Pattanaik, G.; Zangari, G. “Influence of Chloride Anions on the Mechanism of Copper Electrodeposition from Acidic Sulfate Electrolytes”, J. Electrochem. Soc. 2007, 154, D201.
[64] Vasiljevic, N.; Wood, M.; Heard, P. J.; Schwarzacher, W. “The Influence of Specific Anion Adsorption on the Surface Roughness of Electrodeposited Polycrystalline Cu Films”, J. Electrochem. Soc. 2010, 157, D193.
[65] Tantavichet, N.; Damronglerd, S.; Chailapakul, O. “Influence of the interaction between chloride and thiourea on copper electrodeposition”, Electrochim. Acta 2009, 55, 240.
[66] Tromans, D.; Sun, R. H. “Anodic Polarization Behavior of Copper in Aqueous Chloride/Benzotriazole Solutions”, J. Electrochem. Soc. 1991, 138, 3235.
[67] Ye, X. P.; De Bonte, M.; Celis, J. P.; Roos, J. R. “Role of Overpotential on Texture, Morphology and Ductility of Electrodeposited Copper Foils for Printed Circuit Board Applications”, J. Electrochem. Soc. 1992, 139, 1592.
[68] Damjanovic, A.; Setty, T. H. V.; Bockris, J. O’M. “Effect of Crystal Plane on the Mechanism and the Kinetics of Copper Electrocrystallization”, J. Electrochem. Soc. 1966, 113, 429.
[69] Pasquale, M. A.; Gassa, L. M.; Arvia, A. J. “Copper electrodeposition from an acidic plating bath containing accelerating and inhibiting organic additives”, Electrochim. Acta 2008, 53, 5891.
[70] Agrawal, P. M.; Rice, B. M.; Thompson, D. L. “Predicting trends in rate parameters for self-diffusion on FCC metal surfaces”, Surf. Sci. 2002, 515, 21.
[71] Tsai, W. C.; Wan, C. C.; Wang, Y. Y. “Mechanism of copper electrodeposition by pulse current and its relation to current efficiency”, J. Appl. Electrochem. 2002, 32, 1371.
[72] Lu, L.; Schwaiger, R.; Shan, Z. W.; Dao, M.; Lu, K.; Suresh, S. “Nano-sized twins induce high rate sensitivity of flow stress in pure copper”, Acta Mater. 2005, 53, 2169.
[73] Chen, X. H.; Lu, L. “Work hardening of ultrafine-grained copper with nanoscale twins”, Scr. Mater. 2007, 57, 133.
[74] 林彥妙 “低溫脈衝電鍍製備法對銅奈米線的微結構和電性影響之研究”, 碩士論文, 2012, 國立清華大學.
[75] Huang, X.; Liu, Q. “Determination of crystallographic and macroscopic orientation of planar structures in TEM”, Ultramicroscopy 1998, 74, 123.
[76] Kongstein, O. E.; Bertocci, U.; Stafford, G. R. “In Situ Stress Measurements during Copper Electrodeposition on (111)-Textured Au”, J. Electrochem. Soc.2005, 152, C116.
[77] Kitaoka, Y.; Tono, T.; Yoshimoto, S.; Hirahara, T.; Hasegawa, S.; Ohba,T. “Direct detection of grain boundary scattering in damascene Cu wires by nanoscale four-point probe resistance measurements”, Appl. Phys. Lett. 2009, 95, 052110.
[78] Marom, H.; Eizenberg, M. “The effect of surface roughness on the resistivity increase in nanometric dimensions”, J. Appl. Phys. 2006, 99, 123705.
[79] Toimil Molares, M. E.; Hohberger, E. M.; Schaeflein, Ch.; Blick, R. H.; Neumann, R.; Trautmann, C. “Electrical characterization of electrochemically grown single copper nanowires”, Appl. Phys. Lett. 2003, 82, 2139.
[80] Chen, Y. J.; Hsu, J. H.; Lin, H. N. “Fabrication of metal nanowires by atomic force microscopy nanoscratching and lift-off process”, Nanotechnology 2005, 16, 1112.
[81] Huang, Q.; Lilley, C. M.; Divan, R. “An in situ investigation of electromigration in Cu nanowires”, Nanotechnology 2009, 20, 075706.
[82] Barreiro, A.; Boerrnert, F.; Ruemmeli, M. H.; Buechner, B.; Vandersypen, L. M. K. “Graphene at high bias: cracking, layer by layer sublimation, and fusing.”, Nano Lett. 2012, 12, 1873.
[83] Bourlon, B.; Glattli, D. C.; Placais, B.; Berroir, J. M.; Miko, C.; Forro, L.; Bachtold, A. “Geometrical Dependence of High-Bias Current in Multiwalled Carbon Nanotubes”, Phys. Rev. Lett. 2004, 92, 026804.
[84] Filippi, R. G.; Wang, P.-C.; Brendler, A.; Lloyd, J. R. “Correlation between a threshold failure time and void nucleation for describing the bimodal electromigration behavior of copper interconnects”, Appl. Phys. Lett. 2009, 95, 072111.
[85] Zerilli, F. J.; Armstrong, R. W. “Dislocation‐mechanics‐based constitutive relations for material dynamics calculations”, J. Appl. Phys. 1987, 61, 1816.
[86] Spohr R. Ion Tracks and Microtechnology: Principles and Applications, Braunschweig: Vieweg; 1990.
[87] Swalin RA. Thermodynamics of Solids, 2nd ed. New York: Wiley-Interscience Publication; 1972.
[88] Sadigh, B.; Grimvall, G. “Molecular-dynamics study of thermodynamical properties of liquid copper”, Phys. Rev. B 1996, 54, 15742.
[89] Samaras, M.; Derlet, P. M.; Swygenhoven, H. V.; Victoria, M. “Computer Simulation of Displacement Cascades in Nanocrystalline Ni”, Phys. Rev. Lett. 2002, 88, 125505.
[90] Zhu, Y. T.; Wu, X. L.; Liao, X. Z.; Narayan, J.; Mathaudhu, S. N.; Kecskes, L. J. “Twinning partial multiplication at grain boundary in nanocrystalline fcc metals”, Appl. Phys. Lett. 2009, 95, 031909.
[91] Shen, Y. F.; Lu, L.; Lu, Q. H.; Jin, Z. H.; Lu, K. “Tensile properties of copper with nano-scale twins”, Scr. Mater. 2005, 52, 989.
[92] Anderoglu, O.; Misra, A.; Wang, H.; Zhang, X. “Thermal stability of sputtered Cu films with nanoscale growth twins”, J. Appl. Phys. 2008, 103, 094322.
[93] Bowden, P.; Brandon, D. G. “The generation of dislocations in metals by low energy ion bombardment”, Phil. Mag. 1963, 8, 935.
[94] Taylor, G. I. “The Mechanism of Plastic Deformation of Crystals. Part I. Theoretical”, Proc. R. Soc. London A 1934, 145, 362.
[95] Gubicza, J.; Chinh, N. Q.; Krállics, G.; Schiller, I.; Ungár, T. “Microstructure of ultrafine-grained fcc metals produced by severe plastic deformation”, Curr. Appl. Phys. 2006, 6, 194.
[96] Mishra, A.; Kad, B. K.; Gregori, F.; Meyers, M. A. “Microstructural evolution in copper subjected to severe plastic deformation: Experiments and analysis”, Acta Mater. 2007, 55, 13.
[97] Friedland, E.; van der Berg, N. G.; Meyer, O.; Kalbitzer, S. “Study of implantation damage ranges in metals at temperatures ranging from 5 to 300 K”, Nucl. Instr. and Mech. in Phys. Res. B 1996, 118, 29.
[98] Olliges, S.; Gruber, P.; Bardill, A.; Ehrler, D.; Carstanjen, H. D.; Spolenak, R. “Converting polycrystals into single crystals - Selective grain growth by high-energy ion bombardment”, Acta Mater. 2006, 54, 5393.
[99] Yokogawa, S.; Tsuchiya, H. “Effects of Al doping on the electromigration performance of damascene Cu interconnects”, J. Appl. Phys. 2007, 101, 013513.
[100] De Wolf, I. “Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits”, Semicond. Sci. Technol. 1996, 11, 139.
[101] Zhang, Y.; Tao, N. R.; Lu, K. “Effect of stacking-fault energy on deformation twin thickness in Cu–Al alloys”, Scr. Mater. 2009, 60, 211.