簡易檢索 / 詳目顯示

研究生: 高茂富
Gao, Mao-Fu
論文名稱: 以角解析光電子能譜及低能量電子繞射儀比較ClAlPc於金單晶、銀單晶與銀薄膜上介面電子結構
Comparison of interfacial electronic structures among ClAlPc grown on Ag thin films, Ag(111) crystal and Au(111) crystal by ARPES and LEED
指導教授: 唐述中
Tang, Shu-Jung
口試委員: 鄭弘泰
Jeng, Horng-Tay
鄭澄懋
Cheng, Cheng-Maw
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 94
中文關鍵詞: 氯鋁化酞菁金(111)銀(111)銀薄膜/鍺(111)
外文關鍵詞: ClAlPc, Au(111), Ag(111), Ag/Ge(111)
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去,我們以角解析光電子能譜對ClAlPc蒸鍍於Ag(111)薄膜、Ag(111)單晶、Au(111)單晶上已經有所研究。經由控制蒸鍍ClAlPc的速率,我們可以控制在基底上呈現氯向上或氯向下的排列方式。在這三種不同的基底上,使用慢速率蒸鍍時,將會產生以氯向下的排列方式,但穩定性皆有所不同。除此之外,在這三種不同的基底上分子能量狀態的能量位置以及功函數也皆有所不同。
    將ClAlPc蒸鍍於Ag(111)單晶與Ag(111)薄膜上,經過比較後我們發現將ClAlPc蒸鍍於Ag(111)薄膜上時會比蒸鍍於Ag(111)單晶上還要穩定,同時相對應的功函數也上升的較多,除此之外,銀原子將電子轉移給氯原子的數量也比蒸鍍於Ag(111)單晶上還要多。主要原因為在下層的Ge(111)的基底會有一個應力效應(strain effect)對銀薄膜產生作用,因此銀原子之間的空隙會被拉大,進而讓ClAlPc且呈現氯向下的氯原子能夠更加容易且穩定的固定在銀薄膜表面。
    當我們將ClAlPc蒸鍍於Ag(111)單晶與Au(111)單晶上時,透過比較我們發現功函數呈現相反的變化,主要是因為ClAlPc的功函數比銀高,但是比金還要低,恰好介於兩者之間。當ClAlPc以氯向下排列於Au(111)單晶以及Ag(111)單晶表面時,皆為相當的不穩定,容易受到光照效應而對分子能量狀態的強度產生改變,但是當ClAlPc蒸鍍於Ag(111)單晶表面時會比蒸鍍於Ag(111)單晶表面來的穩定。


    We studied ClAlPc adsorbed on the Ag thin films, Ag(111) and Au(111) crystals using angle-resolved photoelectron spectroscopy (ARPES). By adjusting the deposition rate, the adsorption configuration of ClAlPc, Cl-up or Cl-down, can be manipulated. For all these three substrates, the slow deposition rate of ClAlPc can lead to a dominant Cl-down configuration; however, the robustness of such a configuration is different. In addition, the energy positions of molecular energy states (MES) as well as the work function change are also different for these three cases.
    By comparing the cases of ClAlPc adsorbed on the Ag(111) thin films and crystal, we found that ClAlPc in Cl-down configuration is more stable on Ag(111) thin films and the corresponding more increase of work function indicates more charge transfer to Cl from Ag. This is ascribed to the large strain effect on Ag thin films from the underlying Ge(111) substrate; the size of hollow sites between Ag atoms is thus enlarged to facilitate the stable anchoring of Cl atom of ClAlPc in Cl-down configuration.
    As for the comparison between ClAlPc adsorbed on Ag(111) and Au(111) crystals, the work functions shift in opposite directions upon deposition due to the higher (lower) work-function value of Au (Ag) than that of ClAlPc. The ClAlPc in Cl-down configuration on Au(111) is also unstable according to the photon irradiation dependence of the MES peak intensity but relatively more stable than ClAlPc on Ag(111) crystal.

    摘要 i ABSTRACT iii 目錄 v 第一章 緒論 1 第二章 基礎理論 2 2.1晶格 2 2.2表面態 5 2.3有機分子電子結構 7 2.4介面電子結構 9 2.5有機材料 15 第三章 實驗儀器與原理 17 3.1超高真空 17 3.2清潔樣品 21 3.2.1離子濺射槍(sputter gun) 21 3.3蒸度薄膜 23 3.3.1蒸鍍槍(Knudsen cell) 23 3.3.2膜厚儀(thickness monitor) 24 3.4 低能電子繞射儀(LEED) 26 3.5量測光電子能譜 29 3.5.1簡介 29 3.5.2光電效應理論模型 31 3.5.3角解析光電子能譜 36 3.5.4電子能量分析儀 40 3.5.5接收模式 43 3.5.6解析度 44 3.6同步輻射光源 45 第四章 樣品製備與功函數分析方法 49 4.1 樣品製備 49 4.1.1清潔樣品表面 49 4.1.2 成長銀薄膜 51 4.2 成長有機薄膜(ClAlPc) 54 4.3 功函數的量測與分析方法 55 第五章 實驗結果與討論 59 5.1銀單晶與銀薄膜比較 59 5.1.1低能量電子繞射儀實驗比較 60 5.1.2角解析光電子能譜實驗比較 62 5.1.3慢速率且逐步蒸鍍至1 ML比較 69 5.1.4光照效應對慢速率且一次蒸鍍至1 ML的影響 74 5.1.5光照效應對快速率且一次蒸鍍至1 ML的影響 78 5.2金單晶與銀單晶比較 81 5.2.1角解析光電子能譜實驗比較 81 5.2.2慢速率且逐步蒸鍍至1 ML比較 82 5.2.3光照效應對慢速率且一次蒸鍍至1 ML的比較 86 第六章 結論 90 參考文獻 92

    [1] Ching-Hung Chen, Study of the Interfacial Structure between CuPc thin films and the uniform Ag thin films by Angle-resolved Photoemission Spectroscopy, Master thesis, National Tsing Hua University (2011)
    [2] S.-J. Tang, W.-K. Chang, Y.-M. Chiu, H.-Y. Chen, C.-M. Cheng, K.-D. Tsuei, T. Miller, and T.-C. Chiang, Phys. Rev. B 78, 245407 (2008)
    [3] Kai-Jun Su, Manipulation of interfacial dipole by polarorganic molecular, Unpublished, Master's thesis, National Tsing Hua University
    [4] H. Ishii, K. Sugiyama, E. Ito, and K. Seki, Adv. Mater. 11, 605 (1999)
    [5] F. Latteyer, H. Peisert, U. Aygül, I. Biswas, F. Petraki, T. Basova, A. Vollmer,and T. Chassé, J. Phys. Chem. C 115, 11657 (2011)
    [6] H. Fukagawa, S. Hosoumi, H. Yamane, S. Kera, and N. Ueno, Phys. Rev. B 83, 085304 (2011)
    [7] Y. L. Huang, W. Chen, F. Bussolotti, T. C. Niu, A. T. S. Wee, N. Ueno, and S. Kera, Phys. Rev. B 87, 085205 (2013)
    [8] Ying-Chieh Chuang ,Comparison between As-grown and Annealing Methods on the Structures of Polar-Phthalocyanine grown on the Uniform Silver Thin Films ,Master thesis, National Tsing Hua University (2014)
    [9] Hans Lüth, Surface and interface of solids Materials, 3rd edition (Springer,1995)
    [10] Chin-Yung Wang, Study of interfacial structure for thin films of TTC on uniform silver thin films by ARPES, Master thesis, National Tsing Hua University (2012)
    [11] RADAK Furnance Installation and Operation Instructions
    [12] S. Hüfner, Photoelectron Spectroscopy, 3 rd edition (Springer, 2003)
    [13] Andrea Damascelli, Phys. Scr. T109, 61-74 (2004)
    [14] M. P. Seah, and W. A. Dench, Surf. Interface Anal. 1, 2 (1979)
    [15] User Manual SCIENTA R3000, VG SCUENTA
    [16] Mary Hope Upton, Photoemission Studies of the Electron Structures and Properties of Thin Lead Films, Ph.D. thesis, University of Illinois at Urbana-Champaign (2005)
    [17] www.nsrrc.org.tw
    [18] S.-J. Tang, W.-K. Chang, Y.-M. Chiu, H.-Y. Chen, C.-M. Cheng, K.-D. Tsuei, T. Miller, and T.-C. Chiang, Phys. Rev. B 78, 245407 (2008)
    [19] Rudy Schlaf, Calibration of Photoemission Spectra and Work Function Determination (2014)
    [20] M.-K. Lin, Y. Nakayama, Y.-J. Zhuang, K.-J. Su, C.-Y. Wang, T.-W. Pi, S. Metz, T. A. Papadopoulos, T.-C. Chiang, H. Ishii, and S.-J. Tang, Phys. Rev. B 95, 085425 (2017)
    [21] Y. L. Huang, W. Chen, F. Bussolotti, T. C. Niu, A. T. S. Wee, N. Ueno, and S. Kera, Phys. Rev. B 87, 085205 (2013)
    [22] S.-J. Tang, C.-Y. Lee, C.-C. Huang, T.-R. Chang, C.-M. Cheng, K.-D. Tsuei, H.-T. Jeng, V. Yeh, and T.-C. Chiang, Phys. Rev. Lett. 107, 066802 (2011)
    [23] I. Kröger, B. Stadtmüller, C. Stadler, J. Ziroff, M. Kochler, A. Stahl, F. Pollinger, T.-L. Lee, J. Zegenhagen, F. Reinert and C. Kumpf, New J. Phys. 12, 083038 (2010)

    QR CODE