簡易檢索 / 詳目顯示

研究生: 連哲楠
Che-Nan Lien
論文名稱: 共振穿隧元件利用矽量子點埋在氮化矽的矽基之製作
Implementation of Resonant Tunneling Diode on Silicon Substrate by Silicon Dot Embedded Silicon-rich Silicon Nitride
指導教授: 黃惠良
Huey-Liang Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 56
中文關鍵詞: 負微分電阻元件共振穿隧二極體
外文關鍵詞: negative differential resistance device, resonant tunneling diode, RTD, NDRD
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現在積體電路裡的元件尺寸從微米一直縮減到次微米,量子效應就愈顯得重要。而這當元件的尺寸持續縮簡到奈米尺寸時,量子效應就非常值得我們來探討。例如利用量子效應,可以實現負微分電阻元件;它可以將現今的電路再往更快、更緊密、更小尺寸的方向發展。
    一個著名的負微分電阻元件是共振穿隧二極體。共振穿隧二極體仍然是一個很新的元件。它是在1970年由Eski和Tsu這二位提出,一個可以讓電子從幾層很薄的單晶薄膜週期性的交替層疊(superlatices)的量子化機制現象而開始發展。而最近,有愈來愈多的研究團隊,利用相似於共振穿隧二極體的機制,將負微分電阻元件由一層內有矽量子點的介電薄膜製作而成。
    在這篇論文裡,我們成功的製作出由一層內有矽量子點的氮化矽薄膜的負微分電阻元件。而且,它的PVCR(峰值對谷值的電流比例)*Jp(電流密度)大約是20。最後並討論如何用電漿增強式化學氣沈積的製程參數去控制矽量子點大小的趨勢,和探討我們的負微分電阻元件在電性上,三種現象的機制:
    1.峰值電壓會隨著氣體流量比([SiH4]/[N2])減少而增加;
    2.加順向電壓的平均峰值電壓大於加逆向電壓的平均值;
    3.加順向電壓的峰值電壓跳動範圍大於加逆向電壓的跳動範圍。(加逆向電壓的穩定度比加順向電壓的好。)


    As device dimensions in integrated circuits (IC’s) shrink from the micrometer to sub-micrometer levels and below, quantum effects become more prominent. When these device dimensions go down to a few nanometers, quantum effects such as negative differential resistance device (NDRD) lead to interesting new device characteristics, which can be exploited to create extremely fast and compact circuits.
    The famous of NDRD is resonant tunneling diode (RTD). The RTD is a relatively young device. In 1970, Esaki and Tsu proposed that quantum mechanical phenomena should be observable in one-dimensional structures consisting of alternating single-crystalline layers with a period shorter (superlattices) than the electron mean free path. Recently, more and more research groups are working on the negative differential resistance devices (NDRDs) consisting of silicon dots embedded dielectric film matrix. And the mechanism of the negative differential resistance device is simulating to RTDs.
    In this thesis, we successfully implement RTD by silicon dots embedded silicon-rich silicon nitride matrix with PECVD. The performance (PVCR*Jp) of RTD is about 20. Discussing the silicon dot size depend on process parameters, and the mechanism of three phenomena of the electrical characterization of NDRDs:
    (1) Peak voltage will be decreased with increase in gas flow rate ratio ([SiH4]/[N2]).
    (2) The mean peak voltage of positive voltage shift was bigger than negative one.
    (3) Peak voltage range for positive peak voltage shift was bigger than for the negative one. (Negative one was more stable than positive one.)

    Acknowledgement (In English) Abstract (In Chinese) Abstract (In English) Chapter 1 Introduction Chapter 2 Theory and Operation 2.1 Theory of NDRD 2.1.1 Tunneling Through a Single Barrier 2.1.1.1 Quantum effect tunneling 2.1.1.2 Other tunneling effects 2.1.2 Tunneling Throhgh a Double Barrier Structure 2.1.3 RTD Current-Voltage Characteristic Chapter 3 Experiments 3.1 Experiment Process 3.2 Working of the Experimental Equipment 3.2.1 Plasma-enhance chemical-vapor-deposition (PECVD) 3.2.2 Fourier Transform Infrared Spectroscopy (FTIR) 3.2.3 Scanning Electron Micorscopy (SEM) 3.2.4 Transmission Electron Micorscopy (TEM) 3.2.5 HP 4156A Chapter 4 Result and Discusstion 4.1 Effect of Nitrogen Flow Rate on Dot Size 4.2 Optimum NDRD 4.3 Mechansim of Electrical Characterization of NDRD Chapter 5 Conclusion Table caption Figure caption

    [1] F. Capasso, S. Sen, F. Beltram, L. M. Lunardi, A. S. Vengurlekar, P. R. Smith, N. J. Shah, R. J. Malik, and A. Y. Cho, IEEE Trans. Electron Devices, vol. 36, pp. 2065–2082, Oct. 1989.
    [2] L. Esaki and R. Tsu, IBM J. Res. Develop., vol. 14, no. 1, pp. 61–65, Jan. 1970.
    [3] A. Cho, Appl. Phys. Lett., vol. 19, no. 11, pp. 467–468, Dec. 1971.
    [4] A. Cho, Ed., Molecular Beam Epitaxy. Woodbury, NY: AIP Press, 1994.
    [5] L. L. Chang, L. Esaki, W. E. Howard, and R. Ludeke, J. Vac. Sci. Technol., vol. 10, no. 1, pp. 11–16, Jan./Feb. 1973.
    [6] L. L. Chang, L. Esaki, and R. Tsu, Appl. Phys. Lett., vol. 24, no. 12, pp. 593–595, June 1974.
    [7] A. C. Seabaugh and R. Lake, Encyclop. Phys., vol. 22, pp. 335–359, 1998.
    [8] T. P. E. Broekaert, W. Lee, and C. G. Fonstad, Appl. Phys. Lett., vol. 53, no. 16, pp. 1545–1547, Oct. 1988.
    [9] Pinaki Mazumder, Shriram Kulkarni, Mayukh Bhattacharya, Jian Ping Sun, and George I. Haddad, IEEE vol. 86, no.4 , pp. 664-686, April.1998
    [10] S. M. Sze, “Modern Semiconductor Device Physics”, John Wiley & Sons, Inc.
    [12] S. M. Sze, “Physics of Semiconductor Devices 2nd”, John Wiley & Sons, Inc.
    [13] L. Pavesi, L. D. Negro, C. Mazzoleni, G. Franzo, and F. Priolo, Nature (London) 408, 440 (2000).
    [14] N. Takahashi, H. Ishikuro, and T. Hiramoto, Appl. Phys. Lett. 76, 209 (2000).
    [15] S. Arucha, MRS Bull. 23, 49 (1998).
    [16] S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe, and K. Chan, Appl. Phys. Lett. 68, 1377 (1996).
    [17] Y. Hirano, F. Sato, Aihara, N. Saito, S. Miyazaki, and M. Hirose, Appl. Phys. Lett. 79, 2255 (2001).
    [18] M. Fukuda, K. Nakagawa, S. Miyazaki, and M. Hirose, Appl. Phys. Lett. 70, 2291 (1998).
    [19] S. Vijayalakshmi, H. Grebel, G. Yaglioglu, R. Pino, R. Dorsinville, and C. W. White, Appl. Phys. Lett. 88, 6418 (2000).
    [20] R. Tsu and L. Esaki, Appl. Phys. Lett. 22, 562 (1973).
    [21] L. L. Chang, L. Easki, and R. Tsu, Appl. Phys. Lett. 24, 593 (1974).
    [22] K. Rash, A. Scherer, J. M. Warlock, H. G. Craighead, and M. C. Tamargo, Appl. Phys. Lett. 49, 1043 (1986).
    [23] M. A. Reed, J. N. Randall, R. J. Matyi, T. M. Moor, and A. E. Wetsel, Phys. Rev. Lett. 60, 535 (1988).
    [24] Q. Wan, T. H. Wang, M. Zhu, and C. L. Lin, Appl. Phys. Lett. 81 538 (2002)
    [25] Edward H. Nicollian and Raphael Tsu, J. Appl. Phys. 74 4020 (1993)
    [26] Z.Pei, H. L. Hwang, Materials Science in Semiconductor Processing 6 (2003) 339-342
    [27] Zingway Pei, Y. R. Chang, and H. L. Hwang, Appl. Phys. Lett. 80 2839 (2002)
    [28] His-Lien Hsiao, PHD Thesis, National Tsing Hua University (1999)
    [29] Pei Z, Chang YR, Hwang HL. Appl Phys Lett 2002;80:2839.
    [30] Helmut Gunzler, and Hans-Ulrich Gremlich “IR Spectroscopy An Itroduction”, Willey-Vch
    [31] His-Lien Hsiao, PHD Thesis, National Tsing Hua University (1999)
    [32] Zing-Way Pei, PHD Thesis, National Tsing Hua University (2004)
    [33] V. J. Goldman and D. C. Tsui, Physical Review Letters, vol:58, 12, March (1987)
    [34] Atanas Groshev, Physical Review B, vol: 42, 9, 5895-5898, September (1990)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE