簡易檢索 / 詳目顯示

研究生: 許雅音
Hsu, Ya-Yin
論文名稱: 金氧半元件中堆疊式高介電層與界面層之製程研究
Process Study of Higher-k Gate Dielectric Stacks and Interfacial layer for MOS Devices
指導教授: 張廖貴術
Chang-Liao, Kuei-Shu
口試委員: 趙天生
Chao, Tien-Sheng
楊文祿
Yang, Wen-Lu
張廖貴術
Chang-Liao, Kuei-Shu
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 167
中文關鍵詞: 高介電金氧半界面層二氧化矽
外文關鍵詞: high-k, MOS, Ti, Interfacial layer, SiO2, Hf
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    VLSI製程技術持續以元件微縮為目標,在CMOS等效氧化層厚度上以被要求微縮至1nm以下。然而,由於以二氧化矽做為介電層微縮到1.5nm以下會導致嚴重的漏電流問題,為了元件持續微縮,改採用高介電常數材料取代二氧化矽做為介電層,但高介電材料與矽基板為非理想接面、界面氧化層的增生使EOT微縮不易與載子遷移率下降,皆是使用高介電材料介電層所帶來的一些新挑戰。
    第一部分以鉿金屬層與氧化鉿搭配鈦金屬層作為高介電層形成閘極介電層,藉此提高介電層之介電係數,改變鉿金屬層的cycle數和氧化鉿的厚度,觀察鉿金屬層和氧化矽反應的效果,以達到微縮EOT的目的。在氧化鉿和二氧化矽之間,加一層數個原子層厚度的鉿金屬層,再加上適當溫度的PDA,期待能鉿金屬層更容易與二氧化矽反應,與促進晶型的改變。且討論不同鉿金屬層的cycle數和氧化鉿的厚度,期望找出最佳化的鉿金屬層的cycle數和氧化鉿的厚度,使得鉿金屬層往下與二氧化矽反應,形成高介電HfSiOX interface layer。
    第二部分以鉿金屬層與氧化鉿作為高介電層,搭配不同溫度之PDA,藉此觀察鉿金屬層和氧化矽反應的效果,研究最適合鉿金屬的反應溫度。另外,以鉿金屬層與氧化鉿經過不同PDA溫度,且搭配更高介電常數金屬-鈦作為高介電層形成閘極介電層,藉此提高介電層之介電常數,且從不同PDA溫度退火中,觀察出鉿金屬和氧化矽反應程度與鈦經過PDA之擴散深度的影響。因為Ti容易擴散的緣故,造成interfacial layer的增生和提升k值,如何在兩者之間取得平衡,關鍵就在值PDA的溫度;經由PDA 600℃,適當使得Hf layer往下搶氧,因此可進一步控制Ti擴散的程度,使之不至於造成過多interfacial layer的增生,則可達到EOT的微縮;但是在遲滯量與元件可靠度方面,也因參雜入Ti而有變差的趨勢。
    第三部分本章節以化雙氧水形成學氧化層經高溫退火,再以400:1稀釋之氫氟酸蝕刻至不同厚度形成高品質介面層,討論不同厚度之二氧化矽界面氧化層堆疊高介電材料介電層,對電性所造成的影響。再者討論化學氧化層有無經高溫退火,作為界面層,對電性所造成的影響。比較SRPO與Chemical oxide 在電性與可靠度的差異。實驗結果發現,SRPO在遲滯量與元件可靠度上皆有較佳的特性,這應與經高溫氮氣退火使得氧化層應力釋放與氮氣修補氧化層缺陷有關,但是SRPO會使得Hf layer無法往下消耗interfacial layer之特性,讓k直無法有效提升。在比較Chemical oxide與SRPO兩種interfacial layer上,優點是減少SRPO的厚度可進一步微縮EOT,而元件特性無明顯的惡化,但缺點無法讓Hf layer法往下消耗interfacial layer,使HfO2形成tetragonal的晶型。從製程難易和結果綜合探討Chemical oxide搭配Hf layer是目前最佳的氧化層。


    第一章 序論 1 1.1前言 1 1.2 使用高介電係數材料的原因 2 1.3 High-k材料的選擇 2 1.4 Exotic higher-k介電材料 3 1.5高介電係數材料所面臨的問題 4 1.6 高介電係數材料議題探討 4 1.6.1 表面氧化層(Interface oxide)工程 4 1.6.2 原子層介電層沉積研究 5 1.7 論文架構 6 第二章 元件製程與量測 14 2.1氧化鉿與氧化鋯搭配鈦金屬層作為高介電層之元件製作流程 14 2.1.1 晶片刻號和晶背毆姆式接觸 14 2.1.2 化學氧化層成長與閘極介電層沉積 15 2.1.3退火處理及鈦金屬層沉積 15 2.1.4 金屬電極沉積及退火處理 15 2.2 鈦金屬薄膜提高氧化矽鋯介電常數之元件製作流程 16 2.2.1 晶片刻號和晶背毆姆式接觸 16 2.2.2 化學氧化層與閘極堆疊式介電層沉積 16 2.2.3退火處理及鈦金屬層沉積 17 2.2.4 金屬電極沉積及退火處理 17 2.3以化學氧化層經高溫退火作為高介電層與矽基板之介面層元件製作流程 17 2.3.1 晶片刻號和晶背毆姆式接觸 17 2.3.2 化學氧化層與閘極介電層沉積 18 2.3.3 金屬電極沉積及退火處理 18 2.4 金氧半電容電性量測 19 2.5 物性分析 21 2.5.1 X光繞射儀 21 2.5.2歐傑電子能譜儀 21 2.5.3 穿透式電子顯微鏡 22 第三章 鉿金屬層與氧化鉿作為高介電層之金氧半元件電性研究 26 3.1研究動機 26 3.2 製程與量測 28 3.2.1鉿金屬層與氧化鉿金氧半元件作為高介電層之金氧半元件之製程條件 28 3.2.2化學氧化層前處理製程方式對金氧半元件電特性影響之製程條件 29 3.2.3 量測參數 31 3.3 實驗結果與討論 32 3.3.1 鉿金屬層與氧化鉿在不同cycle數和厚度之下對MOS元件電性與可靠性之影響 32 3.3.2化學氧化層製程方式對元件電性與可靠性之影響 37 3.4 結論 39 第四章 60 鉿金屬層與氧化鉿搭配鈦金屬層作為高介電層之金氧半元件電性研究 60 4.1研究動機 61 4.2 製程與量測 62 4.2.1鉿金屬層與氧化鉿薄膜經不同溫度PDA退火作為介電層製程條件 62 4.2.2鉿金屬層與氧化鉿搭配鈦金屬層薄膜作為介電層經過不同溫度PDA退火之製程條件 62 4.2.3 量測參數 63 4.3 實驗結果與討論 64 4.3.1 鉿金屬層與氧化鉿薄膜經不同溫度PDA退火作為介電層對元件電性與可靠性之影響 64 4.3.2鉿金屬層與氧化鉿搭配鈦金屬層薄膜作為介電層經過不同PMA退火對元件電性與可靠性之影響 69 4.4 結論 72 第五章 高介電層與應力釋放氧化(SRPO)界面層之製程處理 98 5.1研究動機 98 5.2 製程與量測 100 5.2.1以化學氧化層經高溫退火搭配鉿金屬層作為高介電層與矽基板之介面層製程條件 100 5.2.2 以化學氧化層經高溫退火搭配Hf layer/HfO2/Hf layer結構之製程條件 101 5.2.3以化學氧化層經高溫退火堆疊鈦金屬經不同溫度PDA退火作為介電層製程條件 102 5.2.4 量測參數 103 5.3 實驗結果與討論 103 5.3.1以化學氧化層經高溫退火搭配鉿金屬層作為高介電層與矽基板之界面層對元件電性與可靠性之影響 103 5.3.2 以化學氧化層經高溫退火搭配Hf layer/HfO2/Hf layer結構對元件電性與可靠性之影響 111 5.3.3 以化學氧化層經高溫退火堆疊鈦金屬經不同溫度PDA退火對元件電性與可靠性之影響 113 5.4 結論 114 第六章 160 結論及展望 160 6.1結論 160 6.2展望 161 參考文獻 163

    [1] Jeff Pettinato et al., International Technology Roadmap for Semiconductors, 2001
    [2] Buchanan et al., Microelectron. Eng., vol 36, p.13, 1997
    [3] H. S. Momose et al., IEEE Trans. Electron Devices, vol. 43 ,p.1233 , 1996
    [4] D. A. Buchanan et al., IBM, J. Res. Develop., vol.43, p.245, 1999
    [5] J. H. Stathis et al., IEEE Transactions on Device and Materials Reliability, vol.1, p.43, 2001
    [6] J. H. Stathis et al. , IEEE International Electron Devices Meeting, p.167, 1998
    [7] A. I. Kingon et al., Nature 406, p.1032
    [8] H. –S. P. Wong et al., IBM J. RES. & DEV, 1999
    [9] S. M. Sze et al., Physics of Semiconductor Devices, p.469, 1996
    [10] Yuan Taur et al., First published 1998, Reprinted, p.161, 1999.
    [11] Buchanan et al., Microelectron. Eng., vol. 36, p.13, 1997.
    [12] H. S. Momose et al., IEEE Trans. Electron Devices, vol. 43, p.1223, 1996
    [13] International Technology Roadmap for Semiconductor, 2003
    [14] M.Houssa et al.,Material Science and Enginerring R, p.37, 2006
    [15] Tung Ming Pan et al. , Appl. Phys. Lett. vol.78, p.1439
    [16] H. –S. P. Wong et al., IBM J. RES. & DEV, 1999
    [17] T. H. Hou et al., Meeting of the Electrochemical Society, SaltLake City , Utah, 2002
    [18] Heiji Watanabe et al., Appl. Phys. Lett. vol. 85, p.3, 2008
    [19] A. I. Kingon et al., Nature 406, p.1032, 2000
    [20] Hiroaki Arimura et al., Applied Surface Science 254 6119–6122, 2008
    [21] J. Huang, D. Heh et al., Symposium on VLSI Technology Digest of Technical Papers, p.34, 2009
    [22] G. D. et al., J. Appl. Phys. vol.89, p. 5243, 2001
    [23] T.A. Raju et al., J. Appl. Phys. vol.52, p.4877, 1981
    [24] P.Sivasubramani et al. , IEEE International Electron Devices Meeting, p.543, 2007
    [25] G.D. Wilk et al., J. Appl. Phys. vol.87, p.484, 2000
    [26] G.D. Wilk et al., J. Appl. Phys. vol.89, p.5243, 2001
    [27] A.Kumar et al., Soc. 55, p.439, 1972
    [28] C.Hobbs et al. , IEEE International Electron Devices Meeting, p.30.1.1, 2001
    [29] S.Saito et al. , IEEE International Electron Devices Meeting, p.7, 2003
    [30] E.Gusev et al. , IEEE International Electron Devices Meeting, MRS Bull, 2001
    [31] Hao Jin et al., Photovoltaic Energy Conversion,Conference Record of the 2006 IEEE 4th World Conference , p1071, 2006
    [32] Ronald Inman , Gregory Jursich et al., Thin Solid Films 516 8498–8506,2008
    [33] W.Zhu et al., IEEE Trans. Electron Devices, vol. 51, no. 1, p.98, Jan. 2004
    [34] A.L.P. Rotondaro et al., IEEE Electron Device Lett., vol. 23, no.10, p. 603 , 2002
    [35] 陳俊龍” AES分析於工業上的應用”
    [36] G.D.Wilk et al., J. Appl. Phys. vol.89, p.5243-5, 2001
    [37] K.Yamamoto et al. , Appl. Phys. Lett. vol.81, p.2053, 2002
    [38] C.L.Cheng et al. , Appl. Phys. Lett. vol.86, p.212902-3, 2005
    [39] C.S Kang et al., IEEE Trans. Electron Devices, vol.51, p.220, 2004
    [40] X. Wang et al., IEEE Trans. Electron Devices, vol.51, p.1798, 2004
    [41] B.Djezzar et al., Symp. Nuclear Science; p.234, 2001
    [42] D.M Fleetwood et al., IEEE Transactions on Nuclear Science; 43:p.779, 1996
    [43] X. Yu. et al., IEEE Electron Device Lett., vol.25, p.501, 2004
    [44] Heiji Watanabe et al. , Appl. Phys. Lett. vol.85, p.3, 2006
    [45] N. Lu et al., IEEE Electron Device Lett., vol.26, no.5, 2005
    [46] K. Ramani et al. , Appl. Phys. Lett. vol.90, 082911 , 2007
    [47] Hiroaki Arimura, Naomu Kitano et al. , Appl. Phys. Lett. vol.92, 212902, 2008
    [48] K.Ramani et al., ,Microelectronic Engineering ,85 ,20081758–1761, 2008
    [49] Gargi Dutta et al. , Appl. Phys. Lett. vol.94, 012907, 2009
    [50] Y. Naitou et al. , Appl. Phys. Lett. vol.92, p.012112 , 2008
    [51] Hiroaki Arimura et al., Applied Surface Science 254 6119–6122, 2008
    [52] Hitoshi Morioka et al. , Appl. Phys. Lett. vol.85, p.16, 2006
    [53] R. I. Hegde et al. , IEEE International Electron Devices Meeting, p35, 2005
    [54] R. I. Hegde et al., J. Appl. Phys. vol.101, p.074113, 2007
    [55] R. I. Hegde et al., J. Appl. Phys. vol.87, vol.104, p.094110, 2008
    [56] Dina H. Triyoso et al., IEEE Electron Device Lett., vol.29, no.1, 2008
    [57] D.H. Triyoso, R.I. Hegde et al., IC Design and Technology, 2009. ICICDT '09. IEEE International Conference ,p89, 2009
    [58] H.-H. Tseng, C. C. Capasso et al. , IEEE International Electron Devices Meeting, p821, 2004
    [59] Hao Jin et al., Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on, p1071, 2006
    [60] Rajesh Katamreddy, Ronald Inman et al., Thin Solid Films 516 8498–8506, 2008
    [61] K. Ramani et al., Microelectronic Engineering 85 1758–1761, 2008
    [62] J. Huang et al., VLSI, p.34, 2009
    [63] L. Ragnarsson et al., IEEE Electron Device Lett., p689, 2003
    [64] Changhwan Choi et al., IEEE Electron Device Lett., vol.26, no.7, p.454, 2005
    [65] Hiroshi Nakashim et al., Solid-State and Integrated-Circuit Technology, p.780, 2008
    [66] Takahashi, M et al., IEEE International Electron Devices Meeting, p523, 2007
    [67] Sivasubramani, P et al., IEEE International Electron Devices Meeting, p.543, 2007
    [68] Borkowska, A, et al., Photonics and Microsystems, 2006 International Students and Young Scientists Workshop , p.5, 2006
    [69] SangBum Kim et al., J. Appl. Phys. vol.107, p.504102, 2010
    [70] D.H. Triyoso,et al., IC Design and Technology, ICICDT '09. IEEE International Conference, p.89, 2009
    [71] Govindarajan, S et al., VLSI-TSA, p.1, 2007
    [72] T. S. Boscke et al., Appl. Phys. Lett. vol.91, p.072912, 2007
    [73] Vellianitis, G et al., IEEE Trans. Electron Devices, p.1548, 2009
    [74] S. Migita et al., VLSI, p.152, 2008
    [75] Ando, T et al., IEEE International Electron Devices Meeting, p.1, 2009
    [76] S. Govindarajan et al., VLSI-TSA, p.1, 2007
    [77] Dominik Fischer et al., Appl. Phys. Lett. , p.012908, 2008
    [78] Changhwan Choi et al., VLSI, p.226, 2005

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE