研究生: |
陳璿琤 Hsuan-Cheng Chen |
---|---|
論文名稱: |
綠膿桿菌HptB訊息傳遞路徑-雜合感應子之分析及下游基因之搜尋 Pseudomonas aeruginosa HptB-mediated signaling pathway-analysis of the hybrid type sensors and identification of the downstream genes |
指導教授: |
張晃猷
Hwan-You Chang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 58 |
中文關鍵詞: | 綠膿桿菌 、雙分子系統 、HptB |
外文關鍵詞: | Pseudomonas aeruginosa, Two-component system, HptB |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
細菌常利用雙分子調控系統來適應外界的刺激。雙分子系統通常包括了一個具有組胺酸激酶和組胺酸磷酸根轉移分子結構域的感應子,以及一個反應調控子。在Pseudomonas aeruginosa PAO1這株菌中,已發現有12個不具有組胺酸磷酸根轉移分子結構域的雜合感應子,以及3個只具有組胺酸磷酸根轉移分子結構域的Hpt蛋白質。本實驗室在先前的研究中,已發現其中五個雜合感應子具有自我磷酸化的能力。而且其中3個(PA2824,PA1611,PA1976)可將磷酸根傳遞給HptB蛋白質。為了能找尋其他可磷酸化HptB蛋白質的感應子,本研究純化了11個雜合感應子以及HptB蛋白質。磷酸化的實驗利用[γ-32P]ATP進行反應之後,以SDS-PAGE和自動放射顯影分析。在時間點分析的實驗中發現,5個具有自我磷酸化能力的感應子都可在30分鐘內表現磷酸化訊息。另外,依據反向磷酸化的結果也發現,RtsM感應子可從HptB獲得磷酸根。這個結果確認了共有四個雜合感應子(PA2824, PA1611, PA1976, and RtsM)可專一性將磷酸根經由傳遞給HptB,再傳給反應調控子。在先前的研究中,本實驗室已發現磷酸化的HptB可將磷酸根傳給反應調控子PA3346。而PA3346則可以將PA3347在Ser56的位置上去磷酸根。本實驗比較PA3346在Asp61以及PA3347在Ser56磷酸化位置突變而成的類磷酸化型和無法磷酸化型互補株,在細菌游動、swarming和生物膜形成能力的表現情況。結果顯示,不同型互補株之間的表現並無明顯差異。為了進一步尋找PA3345、PA3346以及PA3347調控的下游基因,本研究也進行了細菌群體感應分析,發現MPA45、MJL46以及MJL47所分泌的 3OC12-HSL訊息分子量下降。另外,我們也針對MPA45、MJL46和MJL47在swarming狀態下的全細胞蛋白質進行二維膠體電泳以及質譜技術的分析,找尋PA3347的下游基因。依據表現型分析以及蛋白質體的研究,我們認為,PA3345□PA3346□PA3347這條訊息傳遞路徑在Pseudomonas aeruginosa中可能扮演廣泛性的調控功能。
Bacterial two-component systems (2CS) are usually involved in adaptation to external stimuli. Most 2CS consists of a histidine kinase sensor containing the Hpt domain, and a response regulator. In Pseudomonas aeruginosa PAO1, there are twelve hybrid sensors which do not have the Hpt domain. In addition, there are three genes encoding a protein with only the Hpt domain. Autophosphorylation of five of the hybrid sensors in vitro were detected in our laboratory previously. Three of them (PA2824, PA1611, PA1976) displayed an ability to transfer the phosphoryl group to HptB. In order to identify additional sensors that may phosphorylate HptB protein, cytoplasmic region of eleven hybrid sensors and the HptB protein were purified and characterized by phosphorelay assays with [γ-32P]ATP followed by SDS-PAGE and autoradiography. Five sensors showed rapid self-phosphorylation within 30 min in the time course assay. Using the reverse phosphorelay assay, a hybrid sensor RtsM, which can receive phosphoryl group from HptB was identified. The results demonstrate that these four hybrid sensors (PA2824, PA1611, PA1976, and RtsM) perform specific signal transduction through HptB to response regulators. Phosphorylated HptB can transfer the phosphoryl group to response regulator PA3346. Our laboratory also found PA3346 can dephosphorylate PA3347 on Ser56. In this study, swimming, swarming, and biofilm assays were performed to compare PA3346 complementary strains harboring PA3346 with different mutations at Asp61 and PA3347 complementary strains harboring PA3347 with different mutations at Ser56. Our results show little difference among these strains in these aspects. In order to search the downstream genes which were regulated by PA3345, PA3346 and PA3347, we performed quorum sensing assay. Secretion of signal molecular 3OC12-HSL was found to be decreased in MPA45, MJL46 and MJL47. In addition, we analyzed proteome of MPA45, MJL46 and MJL47 swarming cells by 2D gel electrophoresis and mass spectrometry to search for the genes downstream of PA3347. According to the results of the phenotype assay and proteomic analysis, we propose that PA3345□PA3346□PA3347 signal pathway plays a global regulation role in Pseudomonas aeruginosa.
Akerley, B.J., and Miller, J.F. (1996) Understanding signal transduction during bacterial infection. Trends Microbiol 4: 141-146.
Anantharaman, V., and Aravind, L. (2003) Application of comparative genomics in the identification and analysis of novel families of membrane-associated receptors in bacteria. BMC Genomics 4: 34.
Beier, D., and Gross, R. (2006) Regulation of bacterial virulence by two-component systems. Curr Opin Microbiol 9: 143-152.
Biondi, E.G., Skerker, J.M., Arif, M., Prasol, M.S.P., B. S., and Laub, M.T. (2006) A phosphorelay system controls stalk biogenesis during cell cycle progression in Caulobacter crescentus. Mol Microbiol 59: 386-401.
Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254.
Brinkman, H.J., Mertens, K., and van Mourik, J.A. (2002) Phospholipid-binding domain of factor VIII is involved in endothelial cell-mediated activation of factor X by factor IXa. Arterioscler Thromb Vasc Biol 22: 511-516.
Brodsky, I.E., and Gunn, J.S. (2005) A bacterial sensory system that activates resistance to innate immune defenses: potential targets for antimicrobial therapeutics. Mol Interv 5: 335-337.
Caiazza, N.C., Shanks, R.M., and O'Toole, G.A. (2005) Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa. J Bacteriol 187: 7351-7361.
Caiazza, N.C., Merritt, J.H., Brothers, K.M., and O'Toole, G.A. (2007) Inverse regulation of biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J Bacteriol 189: 3603-3612.
Chen, Y.H., Peng, C.F., Lu, P.L., Tsai, J.J., and Chen, T.P. (2004a) In vitro activities of antibiotic combinations against clincal isolates of Pseudomonas aeruginosa. Kaohsiung J Med Sci 20: 261-267.
Chen, Y.T., Chang, H.Y., Lu, C.L., and Peng, H.L. (2004b) Evolutionary analysis of the two-component systems in Pseudomonas aeruginosa PAO1. J Mol Evol 59: 725-737.
Cotter, P.A., and Jones, A.M. (2003) Phosphorelay control of virulence gene expression in Bordetella. Trends Microbiol 11: 367-373.
Daniels, R., Vanderleyden, J., and Michiels, J. (2004) Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev 28: 261-289.
Diggle, S.P., Winzer, K., Chhabra, S.R., Worrall, K.E., Camara, M., and Williams, P. (2003) The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol 50: 29-43.
Elsen, S., Swem, L.R., Swem, D.L., and Bauer, C.E. (2004) RegB/RegA, a highly conserved redox-responding global two-component regulatory system. Microbiol Mol Biol Rev 68: 263-279.
Fraser, G.M., and Hughes, C. (1999) Swarming motility. Curr Opin Microbiol 2: 630-635.
Fuqua, C., Parsek, M.R., and Greenberg, E.P. (2001) Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35: 439-468.
Goodman, A.L., Kulasekara, B., Rietsch, A., Boyd, D., Smith, R.S., and Lory, S. (2004) A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev Cell 7: 745-754.
Greenberg, E.P. (2003) Bacterial communication: tiny teamwork. Nature 424: 134.
Haussler, S. (2004) Biofilm formation by the small colony variant phenotype of Pseudomonas aeruginosa. Environ Microbiol 6: 546-551.
Janiak-Spens, F., Cook, P.F., and West, A.H. (2005) Kinetic analysis of YPD1-dependent phosphotransfer reactions in the yeast osmoregulatory phosphorelay system. Biochemistry 44: 377-386.
Jesaitis, A.J., Franklin, M.J., Berglund, D., Sasaki, M., Lord, C.I., Bleazard, J.B., Duffy, J.E., Beyenal, H., and Lewandowski, Z. (2003) Compromised host defense on Pseudomonas aeruginosa biofilms: characterization of neutrophil and biofilm interactions. J Immunol 171: 4329-4339.
K E Klose , D.S.W., S Kustu , K. E., Weiss, D.S., and Kustu, S. (1993) Glutamate at the site of phosphorylation of nitrogen-regulatory protein NTRC mimics aspartyl-phosphate and activates the protein. J Mol Biol 232: 67-78.
Laskowski, M.A., Osborn, E., and Kazmierczak, B.I. (2004) A novel sensor kinase-response regulator hybrid regulates type III secretion and is required for virulence in Pseudomonas aeruginosa. Mol Microbiol 54: 1090-1103.
Lin, C.T., Huang, Y.J., Chu, P.H., Hsu, J.L., Huang, C.H., and Peng, H.L. (2006) Identification of an HptB-mediated multi-step phosphorelay in Pseudomonas aeruginosa PAO1. Res Microbiol 157: 169-175.
Loomis, W.F., Kuspa, A., and Shaulsky, G. (1998) Two-component signal transduction systems in eukaryotic microorganisms. Curr Opin Microbiol 1: 643-648.
Marquart, M.E., Caballero, A.R., Chomnawang, M., Thibodeaux, B.A., Twining, S.S., and O'Callaghan, R.J. (2005) Identification of a novel secreted protease from Pseudomonas aeruginosa that causes corneal erosions. Invest Ophthalmol Vis Sci 46: 3761-3768.
Matsushita, M., and Janda, K.D. (2002) Histidine kinases as targets for new antimicrobial agents. Bioorg Med Chem 10: 855-867.
Mika, F., and Hengge, R. (2005) A two-component phosphotransfer network involving ArcB, ArcA, and RssB coordinates synthesis and proteolysis of sigmaS (RpoS) in E. coli. Genes Dev 19: 2770-2781.
Murray, T.S., and Kazmierczak, B.I. (2006) FlhF is required for swimming and swarming in Pseudomonas aeruginosa. J Bacteriol 188: 6995-7004.
Nicas, T.I., and Iglewski, B.H. (1984) Isolation and characterization of transposon-induced mutants of Pseudomonas aeruginosa deficient in production of exoenzyme S. Infect Immun 45: 470-474.
O'Toole, G.A., and Kolter, R. (1998) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28: 449-461.
Rodrigue, A., Quentin, Y., Lazdunski, A., Mejean, V., and Foglino, M. (2000) Two-component systems in Pseudomonas aeruginosa: why so many? Trends Microbiol 8: 498-504.
Rogov, V.V., Bernhard, F., Lohr, F., and Dotsch, V. (2004) Solution structure of the Escherichia coli YojN histidine-phosphotransferase domain and its interaction with cognate phosphoryl receiver domains. J Mol Biol 343: 1035-1048.
Salunkhe, P., Smart, C.H., Morgan, J.A., Panagea, S., Walshaw, M.J., Hart, C.A., Geffers, R., Tummler, B., and Winstanley, C. (2005) A cystic fibrosis epidemic strain of Pseudomonas aeruginosa displays enhanced virulence and antimicrobial resistance. J Bacteriol 187: 4908-4920.
Schuster, M., Lostroh, C.P., Ogi, T., and Greenberg, E.P. (2003) Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185: 2066-2079.
Schuster, M., and Greenberg, E.P. (2006) A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int J Med Microbiol 296: 73-81.
Shrout, J.D., Chopp, D.L., Just, C.L., Hentzer, M., Givskov, M., and Parsek, M.R. (2006) The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol Microbiol 62: 1264-1277.
Simon, R., Quandt, J., and Klipp, W. (1989) New derivatives of transposon Tn5 suitable for mobilization of replicons, generation of operon fusions and induction of genes in gram-negative bacteria. Gene 80: 161-169.
Sriramulu, D.D., Nimtz, M., and Romling, U. (2005) Proteome analysis reveals adaptation of Pseudomonas aeruginosa to the cystic fibrosis lung environment. Proteomics 5: 3712-3721.
Stover, C.K., Pham, X.Q., Erwin, A.L., Mizoguchi, S.D., Warrener, P., Hickey, M.J., Brinkman, F.S., Hufnagle, W.O., Kowalik, D.J., Lagrou, M., Garber, R.L., Goltry, L., Tolentino, E., Westbrock-Wadman, S., Yuan, Y., Brody, L.L., Coulter, S.N., Folger, K.R., Kas, A., Larbig, K., Lim, R., Smith, K., Spencer, D., Wong, G.K., Wu, Z., Paulsen, I.T., Reizer, J., Saier, M.H., Hancock, R.E., Lory, S., and Olson, M.V. (2000) Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406: 959-964.
Takeda, S., Fujisawa, Y., Matsubara, M., Aiba, H., and Mizuno, T. (2001) A novel feature of the multistep phosphorelay in Escherichia coli: a revised model of the RcsC --> YojN --> RcsB signalling pathway implicated in capsular synthesis and swarming behaviour. Mol Microbiol 40: 440-450.
Toker, A.S., Kihara, M., and Macnab, R.M. (1996) Deletion analysis of the FliM flagellar switch protein of Salmonella typhimurium. J Bacteriol 178: 7069-7079.
Wang, Z.Y., Wang, F., Sellers, J.R., Korn, E.D., and Hammer, J.A., 3rd (1998) Analysis of the regulatory phosphorylation site in Acanthamoeba myosin IC by using site-directed mutagenesis. Proc Natl Acad Sci U S A 95: 15200-15205.
West, A.H., and Stock, A.M. (2001) Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci 26: 369-376.
Winson, M.K., Swift, S., Fish, L., Throup, J.P., Jorgensen, F., Chhabra, S.R., Bycroft, B.W., Williams, P., and Stewart, G.S. (1998) Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiol Lett 163: 185-192.
Wolanin, P.M., Thomason, P.A., and Stock, J.B. (2002) Histidine protein kinases: key signal transducers outside the animal kingdom. Genome Biol 3: REVIEWS3013.
Xu, Q., Porter, S.W., and West, A.H. (2003) The yeast YPD1/SLN1 complex: insights into molecular recognition in two-component signaling systems. Structure 11: 1569-1581.
Yaku, H., Kato, M., Hakoshima, T., Tsuzuki, M., and Mizuno, T. (1997) Interaction between the CheY response regulator and the histidine-containing phosphotransfer (HPt) domain of the ArcB sensory kinase in Escherichia coli. FEBS Lett 408: 337-340.
Yamamoto, K., Hirao, K., Oshima, T., Aiba, H., Utsumi, R., and Ishihama, A. (2005) Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli. J Biol Chem 280: 1448-1456.