研究生: |
陳佳緯 Chen, Chia-Wei |
---|---|
論文名稱: |
碳化矽半導體元件金半接面改善:在N-type 4H-SiC上結合Ti/Ni/Si三元金屬合金實現低熱預算歐姆接觸 Improving Metal-Semiconductor Contacts in SiC Semiconductors: Low Thermal Budget Ohmic Contacts with Ti/Ni/Si Alloy on N-type 4H-SiC |
指導教授: |
張存續
Chang, Tsun-Hsu |
口試委員: |
林昆霖
Lin, Kun-Lin 溫偉源 Woon, Wei-Yen |
學位類別: |
碩士 Master |
系所名稱: |
半導體研究學院 - 半導體研究學院 College of Semiconductor Research |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 67 |
中文關鍵詞: | 碳化矽 、歐姆接觸 、金半接觸 、蕭特基勢壘 、界面層反應 、特定接觸電阻率 、合金 |
外文關鍵詞: | Silicon carbide, Ohmic contacts, Metal-Semiconductor Contacts, Schottky barrier, Interface layer reaction, Specific conract resistivity, Alloy |
相關次數: | 點閱:42 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在開發一種新型的TiNiSi金屬合金界面層,透過簡化傳統多層金屬結構為雙層結構,以改善N-type 4H-SiC元件的金半接觸性能。文中重點探討了在降低製程熱預算和複雜性的同時,如何有條理的確認歐姆接觸的形成以及防止在退火過程中可能產生的自由碳對元件造成的損害。通過電性能測試和微觀結構的分析,本研究展示了TiNiSi合金在低熱預算條件下仍有效形成歐姆接觸的能力,並為SiC元件在極端條件下的應用提供了新的策略。
論文深入探討了金屬-半導體接面的行為,特別是金屬選擇和界面層反應厚度的重要性。此外,研究在N-type 4H-SiC基板(摻雜濃度約為3×10^18 cm^-3)上,探討了歐姆接觸的形成機制,並成功實現了極低的特定接觸電阻(ρc=4.82×10^-4 Ω·cm^2)。
全文涵蓋了從理論基礎到實驗驗證的完整過程,包括對歐姆接觸和蕭特基接觸的詳細介紹,傳輸線模型分析,以及元件製程控制的詳細說明。此外,透過最簡化製程步驟來降低整體製程熱預算,從而提升製程的成本效益。第五章中對元件的電性能和材料特性進行了深入的測量與分析,進一步驗證了TiNiSi 界面反應層的優異品質。此研究不僅加深了我們對金屬-半導體界面反應的理解,也為提高SiC 元件的接觸效率提供了實用的技術路徑。
This study aims to develop a novel TiNiSi alloy interface layer, simplifying the traditional multilayer metal structures into a bilayer configuration to improve the metal-semiconductor contact performance of N-type 4H-SiC devices. The paper focuses on systematically ensuring the formation of ohmic contact while reducing the thermal budget and complexity of the process, as well as preventing potential damage caused by free carbon during the annealing process. Through electrical performance testing and microstructural analysis, this study demonstrates the ability of the TiNiSi alloy to effectively form Ohmic contact under low thermal budget conditions, providing new strategies for the application of SiC devices under extreme conditions.
The thesis delves into the behavior of metal-semiconductor interface, particularly emphasizing the importance of metal selection and the reaction thickness of the interface layer. Additionally, the research explores how ohmic contacts are formed on an N-type 4H-SiC substrate with a doping concentration of around 3×10^18 cm^-3, and successfully achieves a remarkably low specific contact resistance of 4.82×10^-4 Ω·cm^2.
The document covers the entire process from theoretical foundations to experimental verification, including introduction to ohmic and Schottky contact, transmission line model analysis, and comprehensive descriptions of device process control. Moreover, the study proposes a method to simplify the process steps to reduce the overall thermal budget, thereby enhancing the cost-effectiveness of the manufacturing process. Chapter five presents in-depth measurements and analyses of the electrical performance and material characteristics of the devices, further validating the exceptional quality of the TiNiSi interface reaction layer. This research not only deepens our understanding of metal-semiconductor interface reactions but also provides practical technological pathways for improving the contact efficiency of SiC devices.
[1] W. C. J. Z. . X. H. Ge, N., “Role of ti and w in the ni-based ohmic contacts to n-type 4h-sic.,” Journal of Crystal Growth, vol. 614, p. 127084, 2023.
[2] L. X. Y. . C. Z. Z. Jiang, S. Y., “Role of w in w/ni bilayer ohmic contact to n-type 4h-sic from the perspective of device applications.,” IEEE Transactions on Electron Devices, vol. 65, no. 2, pp. 641–647, 2018.
[3] P. T. H. W. W. J. Z. D. F. . C. X. L. Yang, H., “Ta/ni/ta multilayered ohmic contacts on n-type sic,” Applied surface science, vol. 254, no. 2, pp. 527–531, 2007.
[4] . T. B. Y. Cheng, J. C., “Reduction of specific contact resistance on n-type implanted
4h-sic through argon inductively coupled plasma treatment and post-metal deposi-
tion annealing,” IEEE Electron Device Letters, vol. 38, no. 12, pp. 1700–1703, 2017.
[5] . T. B. Y. Cheng, J. C., “Effects of rapid thermal annealing on ar inductively coupled plasma-treated n-type 4h-sic schottky and ohmic contacts.,” IEEE Transactions on Electron Devices, vol. 65, no. 9, pp. 3739–3745, 2018.
[6] e. a. LA VIA, F., “Structural and electrical characterisation of titanium and nickel silicide contacts on silicon carbide.,” Microelectronic Engineering, vol. 60, no. 1-2,pp. 269–282, 2002.
[7] A. M. . C. A. C. Siad, M., “Role of carbon in the formation of ohmic contact in ni/4hsic and ni/ti/4hsic.,” Applied Surface Science, vol. 258, no. 18, pp. 6819–6822,2012.
[8] L. V. F. . R. V. Roccaforte, F., “Ohmic contacts to sic,” journal of high speed elec-tronics and systems, vol. 15, no. 4, pp. 781–820, 2005.
[9] R. T. Tung, “Schottky barrier height—do we really understand what we measure?.,”Journal of Vacuum Science Technology B: Microelectronics and Nanometer Struc-tures Processing, Measurement, and Phenomena, vol. 11, no. 4, pp. 1546–1552,1993.
[10] R. T. Tung, “The physics and chemistry of the schottky barrier height.,” Applied Physics Reviews, vol. 1, no. 1, 2014.
[11] R. F. PORTER, Lisa M.; DAVIS, “A critical review of ohmic and rectifying contacts for silicon carbide.,” Materials Science and Engineering, vol. 37, no. 2-3, pp. 83–105, 1995.
[12] S. L. M. . D. R. F. Glass, R. C., “Low energy ion assisted deposition of titanium ni-tride ohmic contacts on alpha (6h)silicon carbide.,” Applied physics letters, vol. 59,no. 22, pp. 2868–2870, 1991.
[13] W. J. R. B. M. J. . B. P. A. Crofton, J., “A tiw high-temperature ohmic contact to n-type 6h-sic.,” In Institute of Physics Conference Series., vol. 137, pp. 719–722,1994.
[14] P. T. . G. R. McCluskey, F. P., “High temperature electronics.,” CRC press., 1994.
[15] e. a. LU, Weijie, “Ohmic contact properties of ni/c film on 4h-sic.,” Solid-State Elec-tronics, vol. 47, no. 11, pp. 2001–2010, 2003.
[16] Y. N. S. J. CHO, N. I.; CHOI, “Cu/si/cu multilayer structures for ohmic contact on n-type 4h-sic substrates.,” Diamond and related materials, vol. 13, no. 4-8, pp. 1154–1157, 2004.
[17] B. B. . M. J. Macháč, P., “Structural characterization of nickel–titanium film on silicon carbide,” Applied Surface Science, vol. 254, no. 6, pp. 1691–1693, 2008.
[18] O. Y. . W. A. Ohyanagi, T., “Ti/ni bilayer ohmic contact on 4h-sic.,” Journal of Vac-uum Science Technology B: Microelectronics and Nanometer Structures Processing,Measurement, and Phenomena, vol. 26, no. 4, pp. 1359–1362, 2008.
[19] K. V. G. M. P. A. M. R. S. A. . R. R. Kuchuk, A., “Fabrication and characterization of nickel silicide ohmic contacts to n-type 4h silicon carbide.,” Journal of Physics:Conference Series., vol. 100, no. 4, p. 042003, 2008.
[20] Y. Z. Y.-M. Z. . Y.-M. Z. Shou-Guo, W., “Ohmic contacts of 4h-sic on ion-implantation layers.,” Chinese Physics B, vol. 19, no. 1, p. 017204, 2010.
[21] E. L. J.-L. D. . M.-J. P. Okojie, R. S., “A novel tungsten–nickel alloy ohmic contact to sic at 900◦C,” IEEE Electron Device Letters, vol. 31, no. 8, pp. 791–793, 2010.
[22] S. Y. . K.-J. Jung, K., “Improved microstructure and ohmic contact of nb electrode on n-type 4h-sic,” Thin Solid Films, vol. 520, no. 23, pp. 6922–6928, 2012.
[23] I. S. M.-T. S. H. Y.-S. K. T. . . K. S. I. Van Cuong, V., “Influence of ni and nb thickness on low specific contact resistance and high-temperature reliability of ohmic contacts to 4h-sic,” Japanese Journal of Applied Physics, vol. 58, no. 11, p. 116501, 2019.
[24] K. J. . K.-K. Kim, T., “Processing and characterization of co silicide ohmic con-tacts to 4h–sic.,” Journal of Materials Science: Materials in Electronics, vol. 31,pp. 16299–16307, 2020.
[25] C. X. P. R.-L. X. Z. L.-. Y. Y. Liu, S., “A method to improve the specific contact resistance of 4h-sic ohmic contact through increasing the ratio of sp2-carbon.,” Ap-plied Physics Letters, vol. 117, no. 2, 2020.
[26] H. W. Z. Z.-S. J. S. A.-. Z. Z. Zhou, Z., “Characteristics of ni-based ohmic contacts on n-type 4h-sic using different annealing methods.,” Nanotechnology and Precision Engineering (NPE), vol. 4, no. 1, 2021.
[27] S. S. S. M.-K. K. S. M.-. N. O. Doi, T., “Low-temperature formation of mg/n-type 4h-sic ohmic contacts with atomically flat interface by lowering of schottky barrier height.,” Applied Physics Express, vol. 15, no. 1, p. 015501, 2021.
[28] P. L. M. . W. J. R. Crofton, J., “The physics of ohmic contacts to sic.,” physica status solidi (b), vol. 202, no. 1, pp. 581–603, 1997.
[29] D. K. Schroder, Semiconductor material and device characterization. A Wiley-Interscience, 2005.
[30] “What is raman spectroscopy?.” https://www.jasco-global.com/principle/1-what-is-raman-spectroscopy/.
[31] “X-ray photoelectron spectroscopy (xps).” https://www.ifw-dresden.de/ifw-institutes/ikm/micronano-structures/methods/xps.
[32] “Afm (atomic force microscope).” https://physik.uni-greifswald.de/en/research-groups/soft-matter-and-biophysics-prof-christiane-helm/methods/afm-atomic-force-microscope/.
[33] H. X. X. G. L. Z. Y. J.-Y. X. Y. . L. Y. T. Huang, D., “Secondary ion mass spectrom-etry: The application in the analysis of atmospheric particulate matter.,” Analytica chimica acta, vol. 989, pp. 1–14., 2017.
[34] S. H. L. K. W. Y. T. Y.-B. Y. . . L. X. Han, L., “Improved adhesion and interface ohmic contact on n-type 4h-sic substrate by using ni/ti/ni. journal of semiconduc-tors.,” Journal of Semiconductors, vol. 35, no. 7, p. 072003, 2014.
[35] M. P. B. B. M. V. . S.-P. Cichoň, S., “Raman study of ni and ni silicide contacts on 4h–and 6h–sic.,” Thin Solid Films, vol. 520, no. 13, pp. 4378–4388, 2012.