研究生: |
林彥全 Lin, Yen-Chuan |
---|---|
論文名稱: |
動態假體PIMAL程式的應用探討暨輔助程式開發 Studies on the Phantom with Moving Arms and Legs (PIMAL) in dosimetry applications |
指導教授: |
許榮鈞
Sheu, Rong-Jiun |
口試委員: |
張似瑮
Chang, Szu-Li 蔡惠予 Tsai, Hui-Yu |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 核子工程與科學研究所 Nuclear Engineering and Science |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 134 |
中文關鍵詞: | 擬人假體 、有效劑量 、核醫藥物 、透視攝影 、劑量評估 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
透過擬人假體模型來進行輻射劑量評估是一項重要的課題,但是大多數的假體都是固定直立的姿勢,在一些特殊應用的情況下便無法建立擬真的幾何模型,例如:輻射工作人員近距離在複雜體射源的周遭工作,在這些情況下假體的不同動作可能導致器官劑量的分佈與直立姿勢有很大的差異。本研究引進美國核管會RAMP計畫中的PIMAL程式,該程式允許擬人假體的手、腳等幾何做更大自由度的變化,可以建立更符合真實情況的模型。本研究首先比較透過PIMAL輔助所建立模型之模擬結果與ICRP報告的數值以及與文獻Γ值(Gamma factor)來做驗證,接著建立輻射工作人員走向/走離射源的動態模型,探討以PIMAL輔助建立實際動作模型與建置一連串連續動作之可行性。本研究也針對PIMAL程式在使用上的一些限制進行探討,例如PIMAL無法自由定義上半身的座標,導致旋轉後身體一些器官的位置資訊難以獲得,本研究開發輔助程式來協助解決此問題。本研究最後會建立一系列工作人員面對輻射之模型,盡可能的逼近其實際情況來探討PIMAL的應用潛力,在案例(1)與案例(2)中針對輻射工作人員與射源桶之案例,對於不同的姿勢與劑量之關係進行探討;在案例(3)與案例(4)中則是針對在醫療行為中接觸到輻射的工作人員通常不會同時配戴眼睛、指環、胸章劑量計,因此實際在透過單一劑量計評估劑量時可能忽視其他重要的器官,進而導致劑量超過法規限值以及身體受到危害,對於此問題提供相關器官與全身有效劑量之轉換比值,以及在不同條件下的劑量關係。實際建立的模型包括: (1)面對射源桶之輻射工作人員,若要快速地利用點核仁法評估劑量或是以何種高度下的點作為人體代表點最逼近真實、以何種高度下的點作為代表點較為保守 ; (2)進行量測射源桶作業時所受最小劑量之作業方向與不同動作對比站立時之劑量比值 ; (3)放射師以手處理核醫藥物時在不同條件下之有效劑量與器官等價劑量關係的探討 ; (4)透視攝影時穿戴不同厚度鉛眼鏡、鉛衣之醫生劑量的評估。
The phantom is a common and important way to assess radiation dose. Most of the phantom are in the upright standing posture. Therefore, for some special cases, it is impossible to establish a very realistic geometric model, such as the model of nuclear radiation workers nearing complex high–intensity sources, In these cases, the movement of the phantom results in a geometrically different distribution of the organs, which will bring a large error to the estimation of the dose. This study introduces the PIMAL program from the US Nclear Regulatory Commission’s RAMP program. With the aid of the PIMAL program, it is possible to incorporate more degrees of freedom in the geometry of the arms and legs to achieve a more realistic model. This study will first compare the simulation results of the model established by PIMAL with the ICRP’s report and the Gamma factor to confirm that the model is more informative and accurate. Then will build the model of the phamtom walking toward / away the sources to discuss the feasibility to establishing series of continuous actions model with the aid of PIMAL. Since the coordinates of the upper body cannot be freely defined, the position information of some organs in the body will be difficult to obtain in the PIMAL program. The restriction of the PIMAL program will be solved by developing an auxiliary program. In the end, more details about the application of the works facing radiation source will be discussed. In case (1) and case (2), the case of radiation workers and source barrels is mainly discussed for the doses under different postures. In case (3) and case (4), the medical workers exposed to radiation usually don’t wear eye, ring, and chest dosimeters at the same time, so it is possible to ignore other organs when evaluating doses through a single dosimeter. This study will provide a conversion ratio between the organ dose and the effective dose, as well as the dose relationship under different conditions. The cases are as follows: (1) The best assessment point and the conservative assessment point in the phantom model to present the human body. (2) The direction of the smear test that achieves the minimum dose. And to compare the dose of different postures with the standard upright standing posture. (3) The effective dose of the radiologist in the treatment of nuclear medicines under different conditions. (4) To simulate amd discuss the dose to the doctor while doing fluoroscopy with different thickness lead protection.
[1] X.G. Xu, An exponential growth of computational phantom research in radiation protection, imaging, and radiotherapy: a review of the fifty-year history. Physics in medicine and biology, 2014. 59(18): p. R233
[2] W.S. Snyder, M.R. Ford, and G.G. Warner, “Estimates of Specific Absorbed Fractions for Monoenergetic Photon Sources Uniformly Distributed in Various Organs of a Heterogeneous Phantom,” Society of Nuclear Medicine; Medical Internal Radiation Dose Committee Pamphlet, No. 5, Revised, New York, NY, 1978.
[3] International Commission on Radiological Protection, “Report of the Task Group on Reference Man,” ICRP Publication 23, Annals of the ICRP, 1975.
[4] M. Cristy and K.F. Eckerman, Specific Absorbed Fractions of Energy at Various Ages from Internal Photon Sources. I. Methods, ORNL/TM-8381/VI, Oak Ridge National Laboratory, Oak Ridge, Tenn. (1987).
[5] R. Kramer, M. Zankl, G. Williams, and G. Drexler, “The Calculation of Dose from External Photon Exposures Using Reference Human Phantoms and Monte Carlo Calculations. Part I: The male (ADAM) and female (EVA) adult mathematical phantoms,” Neuherberg, Germany: GSF-National Research Center for Environment and Health; GSF-Bericht S-885, 1982.
[6] K.V. Riper, “BodyBuilder,” 2005.
[7] E. Han, “Revised Series of Stylized Anthropometric Phantoms for Internal and External Radiation Dose Assessment,” Ph.D. Dissertation, University of Florida, 2005
[8] E. Han, W.E. Bolch, and K.F. Eckerman, “Revisions to the ORNL Series of Adult and Pediatric Computational Phantoms for Use with the MIRD Schema,” Health Physics 90(4), 337–356, 2006.
[9] International Commission on Radiological Protection, “Basic Anatomical and Physiological Data for use in Radiological Protection: Reference Values,” ICRP Publication 89, Annals of the ICRP, 2002.
[10] D.C. Kaul, S.D. Egbert, M.D. Otis, T. Kuhn, G.D. Kerr, K.F. Eckerman, M. Cristy, T. Maruyama, J.C. Ryman, and J.S. Tang, Organ Dosimetry, in Reassessment of Atomic Bomb Radiation Dosimetry, Ed., W.C. Roesch (Hiroshima, Radiation Effects Research Foundation), 1987.
73
[11] R.H. Olsher and K.A. Van Riper, “Application of a Sitting MIRD Phantom for Effective Dose Calculations,” Radiation Protection and Dosimetry 116, 392–395, 2005.
[12] F. Takahashi, A. Eendo, and Y. Yamaguchi, “Dose Assessment from Activated Sodium within a Body in Critical Accidents,” Radiation Protection and Dosimetry 106(3), 197–206, 2003. [13] International Commission on Radiological Protection. Recommendations of the International Commission on Radiological Protection: ICRP publication 103. Ann ICRP 2007; 37: 1–332. [14] Journal of Radiological protection Vol.35 No.3 2015. “Obituary – Wolfgang Jacobi 1928-2015.”
[15] E.D.C ashwell, ; C.J. Everett,“A Practical Manual on the Monte Carlo Method for Random Walk Problems” 1959.
[16] Briesmeister J 1986 MCNP-A General Monte Carlo Code for Neutron and Photon Transport, Version SA Rep. LA-7396-M (Los Alamos, NM: LASL) [17] Gregg W. McKinney et al., "MCNPX Overview", Proceedings of the 2006 HSSW, FNAL, IL, September 6-8, 2006, LA-UR-06-6206 (2006). [18] J.S. Hendricks, et al., "MCNPX Extensions Version 2.5.0", LA-UR-05-2675 (2005).
[19] H. Akkurt and K.F. Eckerman, Development of PIMAL: Mathematical Phantom with Moving Arms and Legs, ORNL/TM-2007/14, Oak Ridge National Laboratory, Oak Ridge, Tennessee, May 2007..
[20] W.S. Snyder, M.R. Ford, and G.G. Warner, “Estimates of Specific Absorbed Fractions for Monoenergetic Photon Sources Uniformly Distributed in Various Organs of a Heterogeneous Phantom,” Society of Nuclear
[21] H. Akkurt, K.F. Eckerman, J.C. Wagner, and S. Sherbini, "PIMAL: Computational Phantom with Moving Arms and Legs," Trans. Am. Nucl. Soc. 96, 396-397 (2007).
[22] H. Akkurt, D. Wiarda, A.M. Fleckenstein, and K.F. Eckerman, "A GUI for Computational Phantom with Freely Moving Arms and Legs," Trans. Am. Nucl. Soc. 96, 640-641 (2007).
[23] D.B. Pelowitz, ed., “MCNPX User's Manual, Version 2.5.0,” LA-CP-05-0369 (April 2005).
[24] Sun Developer Network, http://java.sun.com.
[25] A.E. Walsh and D. Gehringer, “Java3d, API Jump Start,”
74
http://web3dbooks.com/java3d/ jumpstart/Java3DExplorer.html.
[26] ICRP International Commission on Radiological Protection (1990) Recommendations of the International Commission on Radiological Protection. Pergamon Press, Oxford. [27] LM Unger, DK Trubey. Specific gamma-ray dose constants for nuclides important to dosimetry and radiological assessment. Oak Ridge, TN: Oak Ridge National Laboratory; Technical Report ORNL/RSIC-45/Rev. 1; 1982.
[28] Jr RJ McConn, CJ Gesh , RT Pagh , RA Rucker , III R Williams. Compendium of material composition data for radiation transport modeling. Richland: Pacific Northwest National Laboratory; 2011. (PNNL-15870 Rev. 1)
[29] IAEA Office of Public Information and Communication,(2014). The Journey to Disposal. Retrived March 25, 2019 from: https://www.youtube.com/watch?v=3QXSkXHDZgU&t=273s&fbclid=IwAR25SZo0b1ExCGdHgr6RYWxQrxUjBWG5twiyjbL9K0wgsIpj4Hg0H3XXG80 [30] The relation between the Euler angles and the Cardan suspension is explained in chap. 11.7 of the following textbook: U. Krey, A. Owen, Basic Theoretical Physics – A Concise Overview, New York, London, Berlin, Heidelberg, Springer (2007) . [31] On Quaternions; or on a new System of Imaginaries in Algebra (letter to John T. Graves, dated 17 October 1843). 1843.
[32] Measuring Walking: A Handbool of Clinical Gait Analysis , Richard Baker , (2013)
[33] National Institute of Standards and Technology.
[34] R.R. Cruces, F.J. Diaz Romero, J.H. Armas (1998). Estimation of effective dose in some digital angiographic and interventional procedyres. Rhe Br. J. Radiol., 71: 42-47.
[35] N.W. Marshall, J. Noble, K. Faulkner (1995).Patient and staff dosimetry in neuroradiology.Br. J. Radiol., 68: 495-501.
[36] D Zweers, J Geleijns, NJM Aarts, et al. Patient and staff radiation dose in fluoroscopy-guided TIPS procedures and dose reduction, using dedicated fluoroscopy exposure settings. (commentary) Br J Radiol 1998; 71:672-676
[37] E Vano, L Gonzalez , E Guibelalde, JM Fernandez, JI Ten. Radiation exposure to medical staff in interventional and cardiac radiology. Br J Radiol 1998;71:954–60.
[38] N Buls , J Pages , de Mey J, Osteaux M.Evaluation of patient and staff dosesduring various CT fluoroscopy guidedinterventions. Health Phys 2003; 85:165–173.
75
[39] UNSCEAR 2006 report to the general assembly with scientific annex. Volume 1. United Nations Scientific Committee on the Effects of Atomic Radiation; 2008. Available at:
http://www.unscear.org/docs/reports/2006/07-82087_Report_2006_Web.pdf.
Accessed June 6, 2019.
[40] Dauer LT. Exposed medical staff: challenges, available tools, and opportunities for improvement. Health Physics, 2014. 106(2):217-224. Available at: http://journals.lww.com/healthphysics/Fulltext/2014/02000/Exposed_Medical_Staff_Challenges,_Available.11.aspx. Accessed June 6, 2019.